B Proof of the identity A\(A\B)=B

Click For Summary
The discussion centers on proving the identity A \ (A \ B) = B from Munkres' Topology. The initial proof attempts to manipulate set operations but leads to confusion regarding the conditions under which the identity holds. Participants clarify that the identity cannot be universally true for all sets A and B, emphasizing the need to consider specific cases. Ultimately, one contributor confirms the correctness of the initial proof while suggesting a brute force method to verify the identity by examining element inclusion. The conversation highlights the importance of understanding set relationships in topology.
VladZH
Messages
56
Reaction score
1
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?
 
Physics news on Phys.org
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?
Either that ##A=X## is the entire space, or you've found a typo. Just consider a point ##b\in B\text{ \ }A##. It is clearly in ##B## but never in any set ##A\text{ \ }C## whatever ##C## might be; except ##A=X## of course.
 
  • Like
Likes VladZH
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?

Perhaps even more simply, from the definition it is clear that ##A \text{ \ }X \subset A##. So, the identity as given cannot hold for all ##A, B##.
 
  • Like
Likes VladZH
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?

You missed nothing. This is correct.
 
  • Like
Likes VladZH
Thank you, guys. Seems like I confused with the formultaion
 
You can always resort to brute force by trying to show every element of B is a subset of A\(A\B) and viceversa. But, yes, you need to know the overall inclusion relation between A and B.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
Replies
4
Views
3K
Replies
1
Views
2K
Replies
18
Views
2K