VladZH
				
				
			 
			
	
	
	
		
	
	
			
		
		
			
			
				- 56
 
- 1
 
I'm trying to proof an identity from Munkres' Topology
A \ ( A \ B ) = B
By definition A \ B = {x : x in A and x not in B}
A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B
What did I miss?
				
			A \ ( A \ B ) = B
By definition A \ B = {x : x in A and x not in B}
A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B
What did I miss?