B Proof of the identity A\(A\B)=B

AI Thread Summary
The discussion centers on proving the identity A \ (A \ B) = B from Munkres' Topology. The initial proof attempts to manipulate set operations but leads to confusion regarding the conditions under which the identity holds. Participants clarify that the identity cannot be universally true for all sets A and B, emphasizing the need to consider specific cases. Ultimately, one contributor confirms the correctness of the initial proof while suggesting a brute force method to verify the identity by examining element inclusion. The conversation highlights the importance of understanding set relationships in topology.
VladZH
Messages
56
Reaction score
1
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?
 
Physics news on Phys.org
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?
Either that ##A=X## is the entire space, or you've found a typo. Just consider a point ##b\in B\text{ \ }A##. It is clearly in ##B## but never in any set ##A\text{ \ }C## whatever ##C## might be; except ##A=X## of course.
 
  • Like
Likes VladZH
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?

Perhaps even more simply, from the definition it is clear that ##A \text{ \ }X \subset A##. So, the identity as given cannot hold for all ##A, B##.
 
  • Like
Likes VladZH
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?

You missed nothing. This is correct.
 
  • Like
Likes VladZH
Thank you, guys. Seems like I confused with the formultaion
 
You can always resort to brute force by trying to show every element of B is a subset of A\(A\B) and viceversa. But, yes, you need to know the overall inclusion relation between A and B.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
Replies
4
Views
3K
Replies
1
Views
2K
Replies
18
Views
2K
Back
Top