3.1415926535
- 80
- 0
I ask for the Proof of the L'Hôpital Rule for the Indeterminate Form \frac{\infty}{\infty} utilising the Rule for the form \frac{0}{0}
The Theorem: Let f,g:(a,b)\to \mathbb{R} be two differentiable functions such as that:
\forall x\in(a,b)\ \ g(x)\neq 0\text{ and }g^{\prime}(x)\neq 0 and \lim_{x\to a^+}f(x)=\lim_{x\to a^+}g(x)=+\infty
If the limit $$\lim_{x\to a^+}\frac{f^{\prime}(x)}{g^{\prime}(x)}$$ exists and is finite, then
$$\lim_{x\to a^+}\frac{f(x)}{g(x)}=\lim_{x\to a^+}\frac{f^{\prime}(x)}{g^{\prime}(x)}$$
My attempt:
Since \lim_{x\to a^+}f(x)=+\infty, $$\exists \delta>0:a<x<a+\delta<b\Rightarrow f(x)>0\Rightarrow f(x)\neq 0$$
Let F,G:(a,a+\delta) F(x)=\frac{1}{f(x)}, G(x)=\frac{1}{g(x)} Then by the hypothesis \lim_{x\to a^+}F(x)=\lim_{x\to a^+}G(x)=0 $$\forall x\in(a,b)\ \ G(x)\neq 0\text{ and }G^{\prime}(x)=-\frac{1}{g^2(x)}g^{\prime}(x)\neq 0$$
The question is, does the limit $$\lim_{x\to a^+}\frac{F^{\prime}(x)}{G^{\prime}(x)}=\lim_{x\to a^+}\frac{-\frac{1}{f^2(x)}f^{\prime}(x)}{-\frac{1}{g^2(x)}g^{\prime}(X)}=\lim_{x\to a^+}\frac{g^2(x)f^{\prime}(x)}{f^2(x)g^{\prime}(x)}$$ exist?
The limit $$\lim_{x\to a^+}\frac{f^{\prime}(x)}{g^{\prime}(x)}$$ exists by the hypothesis but we don't know if the limit $$\lim_{x\to a^+}\frac{g^2(x)}{f^2(x)}$$ exists to deduce that the limit $$\lim_{x\to a^+}\frac{F^{\prime}(x)}{G^{\prime}(x)}$$ exists and use the L'Hôpital Rule for the form \frac{0}{0}
The Theorem: Let f,g:(a,b)\to \mathbb{R} be two differentiable functions such as that:
\forall x\in(a,b)\ \ g(x)\neq 0\text{ and }g^{\prime}(x)\neq 0 and \lim_{x\to a^+}f(x)=\lim_{x\to a^+}g(x)=+\infty
If the limit $$\lim_{x\to a^+}\frac{f^{\prime}(x)}{g^{\prime}(x)}$$ exists and is finite, then
$$\lim_{x\to a^+}\frac{f(x)}{g(x)}=\lim_{x\to a^+}\frac{f^{\prime}(x)}{g^{\prime}(x)}$$
My attempt:
Since \lim_{x\to a^+}f(x)=+\infty, $$\exists \delta>0:a<x<a+\delta<b\Rightarrow f(x)>0\Rightarrow f(x)\neq 0$$
Let F,G:(a,a+\delta) F(x)=\frac{1}{f(x)}, G(x)=\frac{1}{g(x)} Then by the hypothesis \lim_{x\to a^+}F(x)=\lim_{x\to a^+}G(x)=0 $$\forall x\in(a,b)\ \ G(x)\neq 0\text{ and }G^{\prime}(x)=-\frac{1}{g^2(x)}g^{\prime}(x)\neq 0$$
The question is, does the limit $$\lim_{x\to a^+}\frac{F^{\prime}(x)}{G^{\prime}(x)}=\lim_{x\to a^+}\frac{-\frac{1}{f^2(x)}f^{\prime}(x)}{-\frac{1}{g^2(x)}g^{\prime}(X)}=\lim_{x\to a^+}\frac{g^2(x)f^{\prime}(x)}{f^2(x)g^{\prime}(x)}$$ exist?
The limit $$\lim_{x\to a^+}\frac{f^{\prime}(x)}{g^{\prime}(x)}$$ exists by the hypothesis but we don't know if the limit $$\lim_{x\to a^+}\frac{g^2(x)}{f^2(x)}$$ exists to deduce that the limit $$\lim_{x\to a^+}\frac{F^{\prime}(x)}{G^{\prime}(x)}$$ exists and use the L'Hôpital Rule for the form \frac{0}{0}