MHB Proof: p=1 mod 4 if p|x^2+1 Problem statement

  • Thread starter Thread starter I like Serena
  • Start date Start date
  • Tags Tags
    Proof
I like Serena
Science Advisor
Homework Helper
MHB
Messages
16,335
Reaction score
258
Problem statement

Let n be a whole number of the form n=x^2+1 with x \in Z, and p an odd prime that divides n.
Proof: p \equiv 1 \pmod 4.Attempt at a solution

The only relevant case is if p=3 (mod 4).

If I try to calculate mod 3, or mod 4, or mod p, I'm not getting anywhere.

Help?
 
Mathematics news on Phys.org
ILikeSerena said:
Attempt at a solution

The only relevant case is if p=3 (mod 4).

If I try to calculate mod 3, or mod 4, or mod p, I'm not getting anywhere.

Help?

What? 3 isn't congruent to 1 mod 4. p = 5 would work since 5 is congruent to 1 mod 4 and 5|(x^2+1) when x = pm 2.

Now have can you show that if n is an integer such that p|n then p is congruent to 1 mod 4.

I don't know at the moment but I will think about it more.
 
dwsmith said:
What? 3 isn't congruent to 1 mod 4. p = 5 would work since 5 is congruent to 1 mod 4 and 5|(x^2+1) when x = pm 2.

Now have can you show that if n is an integer such that p|n then p is congruent to 1 mod 4.

I don't know at the moment but I will think about it more.

Thanks for replying.

Since p is odd, it is either congruent to 1 or 3 mod 4.
If it is congruent to 1, we have what we need to proof.
So we need to proof that if p=3 mod 4 it would lead to a contradiction.

If we check for instance p=3, we can tell that x^2+1=1,2 mod 3, which is a contradiction (since p=0 mod 3).
With p=7, we can check all possibilities mod 7, which indeed also leads to a contradiction.
Same with p=11.

But how can we generalize this? :confused:
 
I received a hint for this problem (a first year algebra problem btw).

It's:
Hint: determine the order of x in Z/pZ*.

I've got it! I've got it! :D
 
ILikeSerena said:
I received a hint for this problem (a first year algebra problem btw).

It's:
Hint: determine the order of x in Z/pZ*.

I've got it! I've got it! :D
here's a proof which is essentially the same as you have pointed out but little more straight forward:

$x^2 +1 \equiv 0 \mod p$
$\Rightarrow x^2 \equiv -1 \mod p$ ----> we get order of $x$ mod $p$ is not 2.
$\Rightarrow x^4 \equiv 1 \mod p$. ----> one can now easily conclude that the order of $x$ mod $p$ is $4$.

Thus $4|(p-1)$. why? (hint: Fermat's little theorem).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top