- #1
patric44
- 303
- 39
- Homework Statement
- proof that the distribution of mass around the center of mass is = 0.
- Relevant Equations
- ∫Rdm = 0
hi guys
in the proof of the parallel axis theorem this equation is just put as it is as a definition of the center of mass :
$$\int[2(\vec{r_{o}}.\vec{r'})I-(\vec{r_{o}}⊗\vec{r'}+\vec{r'}⊗\vec{r_{0}})]dm = 0$$
is there is any proof for this definition ? and what is the approach for it
in the proof of the parallel axis theorem this equation is just put as it is as a definition of the center of mass :
$$\int[2(\vec{r_{o}}.\vec{r'})I-(\vec{r_{o}}⊗\vec{r'}+\vec{r'}⊗\vec{r_{0}})]dm = 0$$
is there is any proof for this definition ? and what is the approach for it
Last edited by a moderator: