Proof related to the expected value of cardinality

Click For Summary

Discussion Overview

The discussion revolves around the expected value of the sum of random variables defined by Bernoulli distributions, specifically comparing two sets of random variables, A and B, under certain conditions. Participants explore whether the expected value of the sum of variables in set A is greater than or equal to that of set B, given specific assumptions about the distributions and overlaps of the sets.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant poses a question about whether the expected value of the sum of random variables in set A is greater than or equal to that in set B under certain conditions.
  • Another participant suggests that since set A has more elements in common with a specific subset I1, the expected value inequality might hold, but acknowledges this is not a formal proof.
  • Counterexamples are provided by participants to illustrate scenarios where the expected value inequality does not hold, particularly when the distributions of the random variables are manipulated.
  • There is a discussion about the implications of having better knowledge of the probabilities associated with the random variables in set A compared to set B.
  • Participants express uncertainty about the conditions under which the expected value inequality can be guaranteed to hold.
  • Some participants seek clarification on the original question and express a desire for further insights from others in the community.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether the expected value inequality holds under the given conditions. Multiple competing views and counterexamples are presented, indicating that the discussion remains unresolved.

Contextual Notes

Participants note that the assumptions about the distributions and the relationships between sets A and B are crucial to the discussion, and there are unresolved mathematical steps regarding the implications of these assumptions.

Who May Find This Useful

This discussion may be of interest to those studying probability theory, set theory, or related fields, particularly in contexts where understanding expected values of random variables is relevant, such as in engineering or mathematical research.

baiyang11
Messages
8
Reaction score
0
Consider N random variables X_{n} each following a Bernoulli distribution B(r_{n}) with 1 \geq r_{1} \geq r_{2} \geq ... \geq r_{N} \geq 0. If we make following assumptions of sets A and B:

(1) A \subset I and B \subset I with I=\{1,2,3,...,N\}

(2) |A \cap I_{1}| \geq |B \cap I_{1}| with I_{1}=\{1,2,3,...,n\}, n<N

(3) |A|=|B|=n

Do we have \mathbb{E}(\Sigma_{a\in A} X_{a}) \geq\mathbb{E}(\Sigma_{b\in B} X_{b})?

To avoid confusion, \mathbb{E} means expected value.Thanks!
 
Physics news on Phys.org
This question looks really similar to your previous one so I hope I can be of more help this time. I'll give my thoughts about this question.

We have given $N$ random variables with a Bernoulli distribution. That means $\mathbb{P}[X_n = 1] = r_n$ and $\mathbb{P}[X_n = 0]=1-r_n$. Furthermore, $\mathbb{E}[X_i]=r_i$ for $i=1,\ldots,N$.

By condition $(2) |A \cap I_1| \geq |B \cap I_1| \neq 0 $ we know that $A$ has more elements in common with $I_1$. Since the random variables $X_1,\ldots,X_n$ have greater expected values then the random variables $X_j$ with $j \in I \backslash I_1$, the statement
$$\mathbb{E}\left(\sum_{a \in A} X_a \right) \geq \mathbb{E}\left(\sum_{b \in B} X_b \right)$$
probably holds. Of course this is not a formal proof but it should give some intuition.

The only thing we know about $n$ and $N$ is $n<N$ so it could be the case that $N>2n$. In this case we can suppose $A \cap I_1 = \emptyset$ and $B \cap I_1 = \emptyset$. Now it is possible to choose $A$ en $B$ such that the statement does not hold anymore.

To make my point more clear. Suppose $I = \{1,2,\ldots,7\}$ and $I_1 = \{1,2,3\}$, thus $n=3$ and $N = 7$. Set $A = \{5,6,7\}$ and $B=\{4,5,6\}$. Then we have
$$\mathbb{E}\left(\sum_{a \in A} X_a \right) = \mathbb{E}[X_5]+\mathbb{E}[X_6]+\mathbb{E}[X_7] = r_5+r_6+r_7$$
$$\mathbb{E}\left(\sum_{b \in B} X_b \right) = r_4+r_5+r_6$$.

Since we can say $r_4 > r_7$, we have in this case that the statement does not hold.

I hope I made my point clear though I did not give a formal explanation. But I wanted to give my thoughts because in my opinion this is an interesting question.
 
Siron said:
This question looks really similar to your previous one so I hope I can be of more help this time. I'll give my thoughts about this question.

We have given $N$ random variables with a Bernoulli distribution. That means $\mathbb{P}[X_n = 1] = r_n$ and $\mathbb{P}[X_n = 0]=1-r_n$. Furthermore, $\mathbb{E}[X_i]=r_i$ for $i=1,\ldots,N$.

By condition $(2) |A \cap I_1| \geq |B \cap I_1| \neq 0 $ we know that $A$ has more elements in common with $I_1$. Since the random variables $X_1,\ldots,X_n$ have greater expected values then the random variables $X_j$ with $j \in I \backslash I_1$, the statement
$$\mathbb{E}\left(\sum_{a \in A} X_a \right) \geq \mathbb{E}\left(\sum_{b \in B} X_b \right)$$
probably holds. Of course this is not a formal proof but it should give some intuition.

The only thing we know about $n$ and $N$ is $n<N$ so it could be the case that $N>2n$. In this case we can suppose $A \cap I_1 = \emptyset$ and $B \cap I_1 = \emptyset$. Now it is possible to choose $A$ en $B$ such that the statement does not hold anymore.

To make my point more clear. Suppose $I = \{1,2,\ldots,7\}$ and $I_1 = \{1,2,3\}$, thus $n=3$ and $N = 7$. Set $A = \{5,6,7\}$ and $B=\{4,5,6\}$. Then we have
$$\mathbb{E}\left(\sum_{a \in A} X_a \right) = \mathbb{E}[X_5]+\mathbb{E}[X_6]+\mathbb{E}[X_7] = r_5+r_6+r_7$$
$$\mathbb{E}\left(\sum_{b \in B} X_b \right) = r_4+r_5+r_6$$.

Since we can say $r_4 > r_7$, we have in this case that the statement does not hold.

I hope I made my point clear though I did not give a formal explanation. But I wanted to give my thoughts because in my opinion this is an interesting question.
Thank you for reply.
You provide a clear example when $A$ and $B$ have nothing in common with $I_{1}$ at all. But I think my original intention is to make $|A \cap I_{1}| \geq |B \cap I_{1}|>0$. I admit it is my mistake not to make this clear.
So if $|A \cap I_{1}| \geq |B \cap I_{1}|>0$, is the answer "YES" or "NO"?

It may be still No. Someone else gives me the following example.
Let $n \geq 2$, $N=n+1, A=I-\{1\}, B=I-\{2\}$ and $r_{1}>r_{2}$. Then
$$\mathbb{E}\left(\sum_{a \in A} X_a \right)=\sum_{i} r_{i}-r_{1} $$
$$\mathbb{E}\left(\sum_{b \in B} X_b \right)=\sum_{i} r_{i}-r_{2} $$
With $r_{1}>r_{2}$, we get $\mathbb{E}\left(\sum_{a \in A} X_a \right)<\mathbb{E}\left(\sum_{b \in B} X_b \right)$ to make the answer "NO".

In fact, by asking my original question, I what to abstract the following statement which seems to be true intuitively.

If I have better knowledge of what incidents have the top probabilities to happen (like I know set A rather than set B), is the knowledge trustable (A is still favored) when those incidents realize (the expected value thing)?

Now, inspired by the counterexample above, it seems that we can always manipulate different $r_{i}$ to get $B$ favored with $|A|=|B|$.

Now that under the original assumptions $\mathbb{E}\left(\sum_{a \in A} X_a \right) \geq \mathbb{E}\left(\sum_{b \in B} X_b \right)$ does not always hold, I am trying to see under what assumptions, we can always favor A, i.e. $\mathbb{E}\left(\sum_{a \in A} X_a \right) \geq \mathbb{E}\left(\sum_{b \in B} X_b \right)$. But I am a bit lost.
 
baiyang11 said:
Thank you for reply.
You provide a clear example when $A$ and $B$ have nothing in common with $I_{1}$ at all. But I think my original intention is to make $|A \cap I_{1}| \geq |B \cap I_{1}|>0$. I admit it is my mistake not to make this clear.
So if $|A \cap I_{1}| \geq |B \cap I_{1}|>0$, is the answer "YES" or "NO"?

It may be still No. Someone else gives me the following example.
Let $n \geq 2$, $N=n+1, A=I-\{1\}, B=I-\{2\}$ and $r_{1}>r_{2}$. Then
$$\mathbb{E}\left(\sum_{a \in A} X_a \right)=\sum_{i} r_{i}-r_{1} $$
$$\mathbb{E}\left(\sum_{b \in B} X_b \right)=\sum_{i} r_{i}-r_{2} $$
With $r_{1}>r_{2}$, we get $\mathbb{E}\left(\sum_{a \in A} X_a \right)<\mathbb{E}\left(\sum_{b \in B} X_b \right)$ to make the answer "NO".

In fact, by asking my original question, I what to abstract the following statement which seems to be true intuitively.

If I have better knowledge of what incidents have the top probabilities to happen (like I know set A rather than set B), is the knowledge trustable (A is still favored) when those incidents realize (the expected value thing)?

Now, inspired by the counterexample above, it seems that we can always manipulate different $r_{i}$ to get $B$ favored with $|A|=|B|$.

Now that under the original assumptions $\mathbb{E}\left(\sum_{a \in A} X_a \right) \geq \mathbb{E}\left(\sum_{b \in B} X_b \right)$ does not always hold, I am trying to see under what assumptions, we can always favor A, i.e. $\mathbb{E}\left(\sum_{a \in A} X_a \right) \geq \mathbb{E}\left(\sum_{b \in B} X_b \right)$. But I am a bit lost.

Nice counterexample! I did not see it that way. Anyway your question is interesting but not something I can answer right away. I'll think about it but in the mean time I hope some other members can help you out.

Ps: where does this problem come from? I have had some probability theory courses but I've never discussed problems like this before.
 
Siron said:
Nice counterexample! I did not see it that way. Anyway your question is interesting but not something I can answer right away. I'll think about it but in the mean time I hope some other members can help you out.

Ps: where does this problem come from? I have had some probability theory courses but I've never discussed problems like this before.

I appreciate your continuous attention on this problem and I do hope attentions from some other members, maybe from various areas, because it seems to be interdisciplinary between set theory and probability theory.

This abstracted problem comes from a concrete problem in my major, which is electrical engineering (EE). We come up with a concrete method for a EE problem we are researching currently. Then I realize the essence of the concrete method is trying to answer the question, the italic one in my previous post. Then I looked at the EE problem and what we do in the concrete method, and come up with this mathematical problem, which I found interesting as well.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K