Proof that e-field lines don't cross

AI Thread Summary
Electric field lines do not cross because it would violate the principle of uniqueness in electric fields, meaning each point in space must have a single, defined direction of the electric field. The discussion suggests that a deeper explanation may be found in dynamical systems and non-linear dynamics, although the specifics of these theorems are not fully articulated. The fundamental reasoning is that field lines are drawn perpendicular to equipotential surfaces, and if they crossed, it would imply conflicting directions at that point. This conflict is analogous to the interaction between charged particles, where two opposing forces cannot act simultaneously at the same location. Therefore, the non-crossing of electric field lines is a fundamental characteristic of electric fields.
vortmax
Messages
18
Reaction score
1
I understand that electric field lines do not cross and a simple explanation is that it violates existence-uniqueness. I'm thinking there is a more complete explanation out there though. I think the answer lies in the realm of dynamical systems and non-linear dynamics, but it's been a whlie since I've had that and can't piece together the theorems that would fully explain it.
 
Physics news on Phys.org
I'm not sure if this is the right answer, but classically, when analyzing electric fields, you take the vector sum...so technically, if field lines did cross, then you'd have a vector sum there; thus, altogether, you have a "unique" direction at each point.
 
vortmax said:
I understand that electric field lines do not cross and a simple explanation is that it violates existence-uniqueness. I'm thinking there is a more complete explanation out there though. I think the answer lies in the realm of dynamical systems and non-linear dynamics, but it's been a whlie since I've had that and can't piece together the theorems that would fully explain it.

Easy. "Field lines" are just arbitrary lines drawn in a direction that is always perpendicular to every possible equipotential surface that they pass through. If the lines ever crossed, what would the equipotential surface look like at the point where they cross? A surface can only have one normal (subject to scalar multiplication), not two, so it can't have two lines coming out in different directions at the same place that are both perpendicular to it!
 
They simply can't cross because E can't have two values at a single time. Consider this, an electron can either push away a proton near it or the proton can push the electron, these two events cannot occur at the same time. Similarly, E can't have two values and hence electric field lines can't cross each other.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top