- #1

TrueStar

- 95

- 0

## Homework Statement

Proove the limit as x approaches 4 for f(x)=x^2-8x= -16

## Homework Equations

Definition of Precise Limits

## The Attempt at a Solution

I know that I want x^2-8x+16 (after moving the -16 over per the limit definition) to look like |x-4|

Factoring gets me (x-4)(x-4)<e

Because I have two factors, I want to bound one of them so that -1<|x-4|<1.

Adding the four to both sides, I get 3<x<5, but when I add four back in (since both factors are the same), I'm back to -1<|x-4|<1. This leads me to believe that C=1, but I don't think I'm doing this part right. I know the answer isn't 'e'.

I'm lost at this point.

Last edited: