Propagating Uncertainty for sets of data?

NewtonsHead
Messages
26
Reaction score
0
I'm writing the paper on this experiment I just did. Basically I took sets of data for two variables (x,y) and I fit the points to a line in Origin to extract the value that I was trying to measure (J).
*Using generic variables here*
I found a value for J where

J = [8*∏*x*a(b+c)] / y

I did this by graphing the line

y(x) = [8*∏*a(b+c) / J] * x
and extracting J from the slope

The problem is reporting my value of J with an uncertainty. a, b, and c are distances that I measured only 1 time, so I know the uncertainty on those. However, x and y were both measured 10 times in 3 trials each. I fit the average of those 3 trials (10 data points) to a line to obtain J.

Anyone have experience with fitting a lot of data to a line and reporting uncertainties?
 
Physics news on Phys.org
NewtonsHead said:
However, x and y were both measured 10 times in 3 trials each.

What errors are involved in measuring x and y? In some measurement scenarios, one sets the value of x and then measures the value of y. So the error in y depends not only on the error of the instrument that measures y, it also depends on the error made in setting x by the instrument that sets x. In other scenarios, you attempt to measure x and y at a time t and use some instrument that measures t.
 
My two cents:
When you do a linear regression of x versus y and get the slope, you can calculate the confidence interval of the slope (see http://stattrek.com/regression/slope-confidence-interval.aspx ). Suppose S is the slope from the linear regression, and [L1, L2] is the 95% confidence interval for S.
So X = S*Y, where L1 < S < L2 with 95% confidence.

Now the question is whether you can say that L1 < [8*∏*a(b+c) / J] < L2 with 95% confidence, where a, b, c are your measurements and J has some physical meaning.

That is, can we say that (assuming L1 & L2 are positive), 8*∏*a(b+c)/L2 < J < 8*∏*a(b+c)/L1 with 95% confidence?

Your measurement of a, b, c were not part of a known statistical process. You either have to make repeated measurements and get statistics on those measurements, or you can make some worst-case estimates of the measurement errors and adjust the confidence interval for J accordingly. Most experiments have some small measurement errors and people adjust their conclusions accordingly. Hopefully, they are small enough to still get useful results.
 
mayby you should have a look into "Data Fitting and Uncertainty - A practical introduction to weighted least squares and beyond", ISBN 978-3-8348-1022-9, This textbook explains the determination of uncertainties of model parameters quite well and also tells you something about error propagation.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
5
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
30
Views
3K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Back
Top