MHB Properties of the Ordinals ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Properties
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Micheal Searcoid's book: "Elements of Abstract Analysis" ... ...

I am currently focused on understanding Chapter 1: Sets ... and in particular Section 1.4 Ordinals ...

I need some help in fully understanding Theorem 1.4.3 ...

Theorem 1.4.3 reads as follows:
View attachment 8451
View attachment 8452In the above proof by Searcoid we read the following:

"... ... Then $$\beta \subseteq \alpha$$ so that $$\beta$$ is also well ordered by membership. ... ... To conclude that $$\beta$$ is also well ordered by membership, don't we have to show that a subset of an ordinal is well ordered?

Indeed, how would we demonstrate formally and rigorously that $$\beta$$ is also well ordered by membership. ... ... ?
Help will be appreciated ...

Peter
==========================================================================It may help MHB readers of the above post to have access to the start of Searcoid's section on the ordinals ... so I am providing the same ... as follows:
View attachment 8453

It may also help MHB readers to have access to Searcoid's definition of a well order ... so I am providing the text of Searcoid's Definition 1.3.10 ... as follows:

View attachment 8454
View attachment 8455Hope that helps,

Peter
 

Attachments

  • Searcoid - 1 -  Theorem 1.4.3 ... ... PART 1 ... .....png
    Searcoid - 1 - Theorem 1.4.3 ... ... PART 1 ... .....png
    1.8 KB · Views: 111
  • Searcoid - 2 -  Theorem 1.4.3 ... ... PART 2 ... ......png
    Searcoid - 2 - Theorem 1.4.3 ... ... PART 2 ... ......png
    13.6 KB · Views: 103
  • Searcoid - 1 -  Start of section on Ordinals  ... ... PART 1 ... .....png
    Searcoid - 1 - Start of section on Ordinals ... ... PART 1 ... .....png
    32.5 KB · Views: 110
  • Searcoid - Definition 1.3.10 ... .....png
    Searcoid - Definition 1.3.10 ... .....png
    9 KB · Views: 99
  • Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    9.1 KB · Views: 102
Last edited:
Physics news on Phys.org
Peter said:
I am reading Micheal Searcoid's book: "Elements of Abstract Analysis" ... ...

I am currently focused on understanding Chapter 1: Sets ... and in particular Section 1.4 Ordinals ...

I need some help in fully understanding Theorem 1.4.3 ...

Theorem 1.4.3 reads as follows:

In the above proof by Searcoid we read the following:

"... ... Then $$\beta \subseteq \alpha$$ so that $$\beta$$ is also well ordered by membership. ... ... To conclude that $$\beta$$ is also well ordered by membership, don't we have to show that a subset of an ordinal is well ordered?

Indeed, how would we demonstrate formally and rigorously that $$\beta$$ is also well ordered by membership. ... ... ?
Help will be appreciated ...

Peter
==========================================================================It may help MHB readers of the above post to have access to the start of Searcoid's section on the ordinals ... so I am providing the same ... as follows:It may also help MHB readers to have access to Searcoid's definition of a well order ... so I am providing the text of Searcoid's Definition 1.3.10 ... as follows:Hope that helps,

Peter
I have been reflecting on the above post on the ordinals ...Maybe to show that that $$\beta$$ is also well ordered by membership, we have to demonstrate that since every subset of $$\alpha$$ has a minimum element then every subset of $$\beta$$ has a minimum element ... but then that would only be true if every subset of $$\beta$$ was also a subset of $$\alpha$$ ...

Is the above chain of thinking going in the right direction ...?

Still not sure regarding the original question ...

Peter
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top