Properties of transition density functiions

AI Thread Summary
Transition density functions, defined as probabilities related to the increments of variables F and A, exhibit specific behaviors as F and A approach infinity. The discussion centers on the limit of the transition density function p and its derivatives, suggesting that p tends toward zero as both F and A increase indefinitely. Clarification was provided regarding the notation used in the definition of p, emphasizing its role as a probability distribution that requires integration. The conversation highlights the importance of understanding these limits in the context of transition probabilities. Further resources for deeper exploration of these properties were requested.
mathy_girl
Messages
22
Reaction score
0
I hope some of you know something about transition density functions. I'm wondering if there are some nice properties I can use...

Suppose p is a transition density function, defined as follows:

p(t,f,a|T,F,A) dF dA := Prob(F<f<F+dF, A<a<A+dA | F(t)=f, A(t)=a).

My question: what happens to p and its derivatives if we take limits of F and/or A to infinity? Is there a source where I can refer to for this?
 
Physics news on Phys.org
This is a new concept for me, but I'll try if you help me understand. When you posted p(t,f,a|T,F,A) dF dA did you mean to write p(t,f,a|T,F,A, dF, dA)? It would seem to me that Lim(F+dF) = Lim(F) = infinity as F ---> infinity, and similarly for A. So my guess is p ---> 0 as both F and A approach infinity. You can see this more clearly if you define p as F<f<F+dF, A<a<A+dA, with weak inequality.
 
I ment to say that p is defined as the (transition) probability of t going to T, f going to F and a going to A. Multiplying with increments dA and dF is because p itself is a probability distribution, which has to be integrated (it does not have a value in a point).

Does this make it a bit more clear?
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top