Proportionality and Translations in Graphs

italia458
Messages
6
Reaction score
0
Quote from Wikipedia:

To determine experimentally whether two physical quantities are directly proportional, one performs several measurements and plots the resulting data points in a Cartesian coordinate system. If the points lie on or close to a straight line that passes through the origin (0, 0), then the two variables are probably proportional, with the proportionality constant given by the line's slope.

I've been told by people that a graph with a straight line on it can be proportional but only if it passes through the origin. I fail to see why that's true. If a translation was applied and it was moved 1 unit to the right then, all of a sudden, x is not proportional to y anymore? That doesn't make sense to me.
 
Mathematics news on Phys.org
In math, two quantities are proportional, by definition, if their ratio is constant.
i.e. if y is proportional to x, then y/x=k - a constant.
The graph would be y=kx - which is a special case of a straight line.

If you translated the graph, changing the reference point for measuring x for instance, then the equation of the line is:

y=k(x+a) and the graph of x vs y no longer passes through the origin.
The quantities x and y are no longer proportional (y/x=k+ka/x - not a constant) because it is a different x - instead it is x+a that is proportional to y ... which is fair, because x+a was the original quantity.

However, we can still say that

y1 = k(x1+a)
y2 = k(x2+a)

y2-y1 = k(x2-x1)

so changes in y are proportional to changes in x.

If two quantities x and y are related by some line y=mx+c, then the relationship is just called "linear".
 
However, we can still say that

y1 = k(x1+a)
y2 = k(x2+a)

y2-y1 = k(x2-x1)

so changes in y are proportional to changes in x.

So if the graph is translated left or right, I can still say that "changes in y are proportional to changes in x" but I can't say "y is proportional to x" - is that correct?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top