iamalexalright
- 157
- 0
Homework Statement
The positive part of an a in R is defined by:
a^{+} = (|a| + a) / 2
and the negative by:
a^{-} = (|a| - a) / 2.
Prove that a = a^{+} - a^{-} and |a| = a^{+} + a^{-}
Homework Equations
The field axioms(closure, associativity,...)
The order axioms
Definition of the absolute value (and a few theorems)
The Attempt at a Solution
Now, I'm new at proof writing, but this seems too simple (and I don't know if providing all these steps is too much or not?) : /
a = a^{+} - a^{-} <br /> = (|a| + a)/2 - (|a| - a)/2 <br /> = 2^{-1}(|a| + a) - 2^{-1}(|a| - a) <br /> = 2^{-1}(|a| + a - |a| + a) <br /> = 2^{-1}(2a)<br /> = a<br />
(btw, how can I separate my proof line by line with LaTeX?)