MHB Prove Geometry Inequality: 60° ≤ ($aA$+$bB$+$cC$)/($a$+$b$+$c$) < 90°

Click For Summary
The discussion centers on proving the inequality 60° ≤ (aA + bB + cC)/(a + b + c) < 90° for the angles A, B, C of a triangle and their opposite sides a, b, c. The expression represents a weighted mean of the triangle's angles, with each side's weight being less than half the perimeter, ensuring the upper limit is less than 90°. The proof highlights that the largest angle corresponds to the longest side, thus the weighted mean is at least equal to the unweighted mean of the angles, which is 60°. The arguments presented emphasize the geometric relationships within the triangle to establish the inequalities. The discussion concludes with a positive acknowledgment of the proof's clarity.
magneto1
Messages
100
Reaction score
0
(BMO, 2013) The angles $A$, $B$, $C$ of a triangle are measures in degrees, and the lengths of the opposite sides are
$a$,$b$,$c$ respectively. Prove:
\[
60^\circ \leq \frac{aA + bB + cC}{a + b + c} < 90^\circ.
\]

Edit: Update to include the degree symbol for clarification. Thanks, anemone.
 
Last edited:
Mathematics news on Phys.org
[sp]Let $p = a+b+c$ be the perimeter of the triangle. Then $\frac{aA + bB + cC}{a + b + c} = \frac apA + \frac bpB + \frac cpC$ is a weighted mean of the three angles. Each side of a triangle is always less than half the perimeter, so $\frac ap,\, \frac bp,\, \frac cp$ are all less than $\frac12.$ Thus $\frac apA + \frac bpB + \frac cpc < \frac12(A+B+C) = \frac12(180^\circ) = 90^\circ.$

For the other inequality, the largest angle of a triangle is always opposite the longest side, and the smallest angle is opposite the shortest side. (That is "geometrically obvious", but I don't offhand know a proof of it.) So the weighted mean $\frac apA + \frac bpB + \frac cpC$ gives the greatest weight to the largest angle and the least weight to the smallest angle, and therefore must be greater than (or equal to) the unweighted mean $\frac13 A + \frac13 B + \frac13 C = \frac13(180^\circ) = 60^\circ.$[/sp]
 
Opalg said:
[sp]Let $p = a+b+c$ be the perimeter of the triangle. Then $\frac{aA + bB + cC}{a + b + c} = \frac apA + \frac bpB + \frac cpC$ is a weighted mean of the three angles. Each side of a triangle is always less than half the perimeter, so $\frac ap,\, \frac bp,\, \frac cp$ are all less than $\frac12.$ Thus $\frac apA + \frac bpB + \frac cpc < \frac12(A+B+C) = \frac12(180^\circ) = 90^\circ.$

For the other inequality, the largest angle of a triangle is always opposite the longest side, and the smallest angle is opposite the shortest side. (That is "geometrically obvious", but I don't offhand know a proof of it.) So the weighted mean $\frac apA + \frac bpB + \frac cpC$ gives the greatest weight to the largest angle and the least weight to the smallest angle, and therefore must be greater than (or equal to) the unweighted mean $\frac13 A + \frac13 B + \frac13 C = \frac13(180^\circ) = 60^\circ.$[/sp]

Nicely done, Opalg. I would like to add a quick comment.

The ratio in the middle of the inequality remains identical for any triangle similar to $\triangle ABC$ as each side $a$, $b$, $c$ will just be replaced by $ka$, $kb$, $kc$ off some factor $k$. So without loss, we can just assume $a+b+c=1$. That makes the problem easier.

If you assume that, $< 90^\circ$ comes from the triangle inequality (to justify each side is less than $\frac 12$), and $60^\circ \leq$ comes from $180 = (A+B+C)(a+b+c)$ and the rearrangement inequality.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K