MHB Prove Geometry Inequality: 60° ≤ ($aA$+$bB$+$cC$)/($a$+$b$+$c$) < 90°

magneto1
Messages
100
Reaction score
0
(BMO, 2013) The angles $A$, $B$, $C$ of a triangle are measures in degrees, and the lengths of the opposite sides are
$a$,$b$,$c$ respectively. Prove:
\[
60^\circ \leq \frac{aA + bB + cC}{a + b + c} < 90^\circ.
\]

Edit: Update to include the degree symbol for clarification. Thanks, anemone.
 
Last edited:
Mathematics news on Phys.org
[sp]Let $p = a+b+c$ be the perimeter of the triangle. Then $\frac{aA + bB + cC}{a + b + c} = \frac apA + \frac bpB + \frac cpC$ is a weighted mean of the three angles. Each side of a triangle is always less than half the perimeter, so $\frac ap,\, \frac bp,\, \frac cp$ are all less than $\frac12.$ Thus $\frac apA + \frac bpB + \frac cpc < \frac12(A+B+C) = \frac12(180^\circ) = 90^\circ.$

For the other inequality, the largest angle of a triangle is always opposite the longest side, and the smallest angle is opposite the shortest side. (That is "geometrically obvious", but I don't offhand know a proof of it.) So the weighted mean $\frac apA + \frac bpB + \frac cpC$ gives the greatest weight to the largest angle and the least weight to the smallest angle, and therefore must be greater than (or equal to) the unweighted mean $\frac13 A + \frac13 B + \frac13 C = \frac13(180^\circ) = 60^\circ.$[/sp]
 
Opalg said:
[sp]Let $p = a+b+c$ be the perimeter of the triangle. Then $\frac{aA + bB + cC}{a + b + c} = \frac apA + \frac bpB + \frac cpC$ is a weighted mean of the three angles. Each side of a triangle is always less than half the perimeter, so $\frac ap,\, \frac bp,\, \frac cp$ are all less than $\frac12.$ Thus $\frac apA + \frac bpB + \frac cpc < \frac12(A+B+C) = \frac12(180^\circ) = 90^\circ.$

For the other inequality, the largest angle of a triangle is always opposite the longest side, and the smallest angle is opposite the shortest side. (That is "geometrically obvious", but I don't offhand know a proof of it.) So the weighted mean $\frac apA + \frac bpB + \frac cpC$ gives the greatest weight to the largest angle and the least weight to the smallest angle, and therefore must be greater than (or equal to) the unweighted mean $\frac13 A + \frac13 B + \frac13 C = \frac13(180^\circ) = 60^\circ.$[/sp]

Nicely done, Opalg. I would like to add a quick comment.

The ratio in the middle of the inequality remains identical for any triangle similar to $\triangle ABC$ as each side $a$, $b$, $c$ will just be replaced by $ka$, $kb$, $kc$ off some factor $k$. So without loss, we can just assume $a+b+c=1$. That makes the problem easier.

If you assume that, $< 90^\circ$ comes from the triangle inequality (to justify each side is less than $\frac 12$), and $60^\circ \leq$ comes from $180 = (A+B+C)(a+b+c)$ and the rearrangement inequality.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top