Prove Geometry Inequality: 60° ≤ ($aA$+$bB$+$cC$)/($a$+$b$+$c$) < 90°

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Geometry Inequality
Click For Summary
SUMMARY

The discussion proves the inequality \(60^\circ \leq \frac{aA + bB + cC}{a + b + c} < 90^\circ\) for angles \(A\), \(B\), and \(C\) of a triangle with opposite sides \(a\), \(b\), and \(c\). The proof utilizes the concept of weighted means, demonstrating that the weighted average of the angles is bounded by the unweighted mean of \(60^\circ\) and the maximum angle sum of \(90^\circ\). The argument relies on the properties of triangle angles and their corresponding sides, confirming that the largest angle is opposite the longest side.

PREREQUISITES
  • Understanding of triangle properties and angle measures
  • Familiarity with weighted means and their applications
  • Basic knowledge of inequalities in geometry
  • Concept of triangle perimeter and side relationships
NEXT STEPS
  • Study the properties of weighted averages in geometry
  • Explore proofs related to triangle inequalities
  • Learn about the relationship between triangle angles and side lengths
  • Investigate the implications of the triangle inequality theorem
USEFUL FOR

Mathematicians, geometry students, educators, and anyone interested in advanced geometric proofs and inequalities.

magneto1
Messages
100
Reaction score
0
(BMO, 2013) The angles $A$, $B$, $C$ of a triangle are measures in degrees, and the lengths of the opposite sides are
$a$,$b$,$c$ respectively. Prove:
\[
60^\circ \leq \frac{aA + bB + cC}{a + b + c} < 90^\circ.
\]

Edit: Update to include the degree symbol for clarification. Thanks, anemone.
 
Last edited:
Mathematics news on Phys.org
[sp]Let $p = a+b+c$ be the perimeter of the triangle. Then $\frac{aA + bB + cC}{a + b + c} = \frac apA + \frac bpB + \frac cpC$ is a weighted mean of the three angles. Each side of a triangle is always less than half the perimeter, so $\frac ap,\, \frac bp,\, \frac cp$ are all less than $\frac12.$ Thus $\frac apA + \frac bpB + \frac cpc < \frac12(A+B+C) = \frac12(180^\circ) = 90^\circ.$

For the other inequality, the largest angle of a triangle is always opposite the longest side, and the smallest angle is opposite the shortest side. (That is "geometrically obvious", but I don't offhand know a proof of it.) So the weighted mean $\frac apA + \frac bpB + \frac cpC$ gives the greatest weight to the largest angle and the least weight to the smallest angle, and therefore must be greater than (or equal to) the unweighted mean $\frac13 A + \frac13 B + \frac13 C = \frac13(180^\circ) = 60^\circ.$[/sp]
 
Opalg said:
[sp]Let $p = a+b+c$ be the perimeter of the triangle. Then $\frac{aA + bB + cC}{a + b + c} = \frac apA + \frac bpB + \frac cpC$ is a weighted mean of the three angles. Each side of a triangle is always less than half the perimeter, so $\frac ap,\, \frac bp,\, \frac cp$ are all less than $\frac12.$ Thus $\frac apA + \frac bpB + \frac cpc < \frac12(A+B+C) = \frac12(180^\circ) = 90^\circ.$

For the other inequality, the largest angle of a triangle is always opposite the longest side, and the smallest angle is opposite the shortest side. (That is "geometrically obvious", but I don't offhand know a proof of it.) So the weighted mean $\frac apA + \frac bpB + \frac cpC$ gives the greatest weight to the largest angle and the least weight to the smallest angle, and therefore must be greater than (or equal to) the unweighted mean $\frac13 A + \frac13 B + \frac13 C = \frac13(180^\circ) = 60^\circ.$[/sp]

Nicely done, Opalg. I would like to add a quick comment.

The ratio in the middle of the inequality remains identical for any triangle similar to $\triangle ABC$ as each side $a$, $b$, $c$ will just be replaced by $ka$, $kb$, $kc$ off some factor $k$. So without loss, we can just assume $a+b+c=1$. That makes the problem easier.

If you assume that, $< 90^\circ$ comes from the triangle inequality (to justify each side is less than $\frac 12$), and $60^\circ \leq$ comes from $180 = (A+B+C)(a+b+c)$ and the rearrangement inequality.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K