mobe
- 19
- 0
Homework Statement
Suppose M is a D_module and N is a submodule. N is called pure iff for any y \in N and a \in D ax = y is solvable in N iff it is solvable in M. N is a direct summand of M iff there is a submodule K with M = N \oplus K. Prove:
(1) If N is a direct summand, then N is pure.
(2) Suppose D is P.I.D and M is a finitely generated torsion module. IF N is pure, then N is a direct summand of M.
Homework Equations
I am not sure what it means for ax=y is solvable in M iff it is solvable in N
The Attempt at a Solution
(1) If M is a direct summand, then there is a submodule K with M = N \oplus K. Let's suppose that ax=y is solvable in M for y \in N and a \in D, then there is a z \in N such that az=y. To prove that N is pure, one needs to prove that z \in N. I do not know if this is what I am supposed to do and if so, I have no idea how to do it.
(2)Now D is a P.I.D and M is a finitely generated torsion module. Assume that N is pure. Let y \in N and a\in D, then we have z \in N such that az=y implies z \in M. I do not know how to show that there is a submodule K of M such that M = N \oplus K.
Last edited: