The Subject
- 32
- 0
From the text it says (P -> Q) or (P -> R) is equivalent to P -> (Q or R)
I tried to see if this is true so I tried
(P \to Q) \lor (P \to R) \\<br /> (P \lor \neg Q) \lor (P \lor \neg R) \\<br /> P \lor \neg Q \lor \neg R \\<br /> P \lor \neg(Q \land R) \\<br /> P \to (Q \land R)
and
P \to (Q \lor R) \\<br /> P \lor \neg(Q \lor R ) \\<br /> P \lor (\neg Q \land \neg R) \\<br /> (P \lor \neg Q) \land (P \lor \neg R) \\<br /> (P \to Q) \land (P \to R)
From what I've done its seems like they're not equivalent ?
I tried to see if this is true so I tried
(P \to Q) \lor (P \to R) \\<br /> (P \lor \neg Q) \lor (P \lor \neg R) \\<br /> P \lor \neg Q \lor \neg R \\<br /> P \lor \neg(Q \land R) \\<br /> P \to (Q \land R)
and
P \to (Q \lor R) \\<br /> P \lor \neg(Q \lor R ) \\<br /> P \lor (\neg Q \land \neg R) \\<br /> (P \lor \neg Q) \land (P \lor \neg R) \\<br /> (P \to Q) \land (P \to R)
From what I've done its seems like they're not equivalent ?