Prove No Analytic Function F on Annulus D: 1<|z|<2

oab729
Messages
12
Reaction score
0

Homework Statement


Prove that there does not exist an analytic function on the annulus D: 1<|z|<2, s.t. F'(z) = 1/z for all z in D.


Homework Equations





The Attempt at a Solution


Assume F exists, then for z in D, not a negative number, F(z) = Log z + c since Log' z = 1/z... Lost
 
Physics news on Phys.org
Find a path C such that \int_C \frac1z\,dz\neq0
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top