MHB Prove $\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)$ w/ $A,B$ Trig III

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Trigonometry
AI Thread Summary
The discussion focuses on proving the identity for the product of cosines given specific values for A and B. The correct values are established as A = π/(2^(n+1)) and B = π/(2^(n+2)). Participants explore the proof through induction and the application of trigonometric identities, particularly using the identity cos²θ = 1/2(cos(2θ) + 1). The proof involves simplifying the product step by step, ultimately demonstrating that the left-hand side equals the right-hand side, confirming the identity. The conversation emphasizes the importance of correctly identifying A and B to achieve the desired result.
sbhatnagar
Messages
87
Reaction score
0
Challenge Problem
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem
If $A=\dfrac{\pi}{2^{2^{n+1}}}$ and $B=\dfrac{\pi}{2^{2^{n+2}}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
Something wrong here: I think there is one exponent too many in $A$ and $B$, it should be $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$.
 
sbhatnagar said:
Challenge Problem
If $A=\dfrac{\pi}{2^{2^{n+1}}}$ and $B=\dfrac{\pi}{2^{2^{n+2}}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]

try for n = 0
A = \frac{\pi}{4} , \; B = \frac{\pi}{16}

Trying to prove
\prod_{r = 0 }^n (\cos 2^r A + \cos 2^r B ) = \frac{1}{2^{1}} \left( \cos \frac{\pi}{2^{2}} - \cos \frac{\pi}{2^{1}}\right)
By induction on r
when r = 0
\cos A + \cos B = \frac{1}{2(\cos \frac{\pi}{4} - \cos \frac{\pi}{2} ) }
the right hand side \frac{1}{\sqrt{2}}
which is not euqal to the left hand side
 
Opalg is right. It should have been $A=\frac{\pi}{2^{n+1}}$ and $B=\frac{\pi}{2^{n+2}}$. I am extremely sorry for this blunder.
 
sbhatnagar said:
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
You want to show that $\displaystyle \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \prod_{r=0}^n \bigl(\cos \tfrac{2^r\pi}{2^{n+2}} + \cos \tfrac{2^r\pi}{2^{n+1}}\bigr) = \tfrac1{2^{n+1}}.$ The left side of that is $$ \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+2}} + \cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+1}} + \cos \tfrac{\pi}{2^{n}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n}} + \cos \tfrac{\pi}{2^{n-1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n-1}} + \cos \tfrac{\pi}{2^{n-2}}\bigr) \cdots \bigl(\cos \tfrac{\pi}{2} + \cos \tfrac{\pi}{4}\bigr).\qquad(**) $$

Use the trig identity $\cos^2\theta = \tfrac12(\cos2\theta+1)$ to write the product of the first two factors in (**) as $$ \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+2}} + \cos \tfrac{\pi}{2^{n+1}}\bigr) = \cos^2\tfrac{\pi}{2^{n+2}}-\cos^2 \tfrac{\pi}{2^{n+1}} = \tfrac12\bigl( \cos \tfrac{\pi}{2^{n+1}}-\cos \tfrac{\pi}{2^{n}}\bigr).$$ Substitute that into (**) and then repeat the process of combining the first two factors. Each time you do that, it will introduce a factor of 1/2 and decrease by one the number of factors in the product. After doing this $n+1$ times you will be left with $\frac1{2^{n+1}}\bigl( \cos \tfrac{\pi}{2}-\cos \pi\bigr) = \frac1{2^{n+1}}.$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
2
Views
993
Back
Top