Prove $\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)$ w/ $A,B$ Trig III

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Trigonometry
Click For Summary
SUMMARY

The discussion focuses on proving the identity for the product of cosines, specifically for angles defined as \( A = \frac{\pi}{2^{n+1}} \) and \( B = \frac{\pi}{2^{n+2}} \). The identity to prove is given by the equation: \[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B) = \frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}} - \cos \frac{\pi}{2^{n+1}}\right)}.\] The discussion highlights a correction regarding the values of \( A \) and \( B \) and provides a step-by-step approach using induction and trigonometric identities to validate the formula.

PREREQUISITES
  • Understanding of trigonometric identities, particularly cosine functions.
  • Familiarity with mathematical induction techniques.
  • Knowledge of product-to-sum formulas in trigonometry.
  • Ability to manipulate and simplify trigonometric expressions.
NEXT STEPS
  • Study the application of mathematical induction in proving identities.
  • Learn about product-to-sum identities in trigonometry.
  • Explore the properties of cosine functions and their transformations.
  • Investigate advanced trigonometric identities and their proofs.
USEFUL FOR

Mathematicians, students studying advanced trigonometry, and anyone interested in proving trigonometric identities through induction and product formulas.

sbhatnagar
Messages
87
Reaction score
0
Challenge Problem
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem
If $A=\dfrac{\pi}{2^{2^{n+1}}}$ and $B=\dfrac{\pi}{2^{2^{n+2}}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
Something wrong here: I think there is one exponent too many in $A$ and $B$, it should be $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$.
 
sbhatnagar said:
Challenge Problem
If $A=\dfrac{\pi}{2^{2^{n+1}}}$ and $B=\dfrac{\pi}{2^{2^{n+2}}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]

try for n = 0
A = \frac{\pi}{4} , \; B = \frac{\pi}{16}

Trying to prove
\prod_{r = 0 }^n (\cos 2^r A + \cos 2^r B ) = \frac{1}{2^{1}} \left( \cos \frac{\pi}{2^{2}} - \cos \frac{\pi}{2^{1}}\right)
By induction on r
when r = 0
\cos A + \cos B = \frac{1}{2(\cos \frac{\pi}{4} - \cos \frac{\pi}{2} ) }
the right hand side \frac{1}{\sqrt{2}}
which is not euqal to the left hand side
 
Opalg is right. It should have been $A=\frac{\pi}{2^{n+1}}$ and $B=\frac{\pi}{2^{n+2}}$. I am extremely sorry for this blunder.
 
sbhatnagar said:
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
You want to show that $\displaystyle \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \prod_{r=0}^n \bigl(\cos \tfrac{2^r\pi}{2^{n+2}} + \cos \tfrac{2^r\pi}{2^{n+1}}\bigr) = \tfrac1{2^{n+1}}.$ The left side of that is $$ \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+2}} + \cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+1}} + \cos \tfrac{\pi}{2^{n}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n}} + \cos \tfrac{\pi}{2^{n-1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n-1}} + \cos \tfrac{\pi}{2^{n-2}}\bigr) \cdots \bigl(\cos \tfrac{\pi}{2} + \cos \tfrac{\pi}{4}\bigr).\qquad(**) $$

Use the trig identity $\cos^2\theta = \tfrac12(\cos2\theta+1)$ to write the product of the first two factors in (**) as $$ \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+2}} + \cos \tfrac{\pi}{2^{n+1}}\bigr) = \cos^2\tfrac{\pi}{2^{n+2}}-\cos^2 \tfrac{\pi}{2^{n+1}} = \tfrac12\bigl( \cos \tfrac{\pi}{2^{n+1}}-\cos \tfrac{\pi}{2^{n}}\bigr).$$ Substitute that into (**) and then repeat the process of combining the first two factors. Each time you do that, it will introduce a factor of 1/2 and decrease by one the number of factors in the product. After doing this $n+1$ times you will be left with $\frac1{2^{n+1}}\bigl( \cos \tfrac{\pi}{2}-\cos \pi\bigr) = \frac1{2^{n+1}}.$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
988
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K