MHB Prove $\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)$ w/ $A,B$ Trig III

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Trigonometry
AI Thread Summary
The discussion focuses on proving the identity for the product of cosines given specific values for A and B. The correct values are established as A = π/(2^(n+1)) and B = π/(2^(n+2)). Participants explore the proof through induction and the application of trigonometric identities, particularly using the identity cos²θ = 1/2(cos(2θ) + 1). The proof involves simplifying the product step by step, ultimately demonstrating that the left-hand side equals the right-hand side, confirming the identity. The conversation emphasizes the importance of correctly identifying A and B to achieve the desired result.
sbhatnagar
Messages
87
Reaction score
0
Challenge Problem
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem
If $A=\dfrac{\pi}{2^{2^{n+1}}}$ and $B=\dfrac{\pi}{2^{2^{n+2}}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
Something wrong here: I think there is one exponent too many in $A$ and $B$, it should be $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$.
 
sbhatnagar said:
Challenge Problem
If $A=\dfrac{\pi}{2^{2^{n+1}}}$ and $B=\dfrac{\pi}{2^{2^{n+2}}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]

try for n = 0
A = \frac{\pi}{4} , \; B = \frac{\pi}{16}

Trying to prove
\prod_{r = 0 }^n (\cos 2^r A + \cos 2^r B ) = \frac{1}{2^{1}} \left( \cos \frac{\pi}{2^{2}} - \cos \frac{\pi}{2^{1}}\right)
By induction on r
when r = 0
\cos A + \cos B = \frac{1}{2(\cos \frac{\pi}{4} - \cos \frac{\pi}{2} ) }
the right hand side \frac{1}{\sqrt{2}}
which is not euqal to the left hand side
 
Opalg is right. It should have been $A=\frac{\pi}{2^{n+1}}$ and $B=\frac{\pi}{2^{n+2}}$. I am extremely sorry for this blunder.
 
sbhatnagar said:
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that

\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
You want to show that $\displaystyle \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \prod_{r=0}^n \bigl(\cos \tfrac{2^r\pi}{2^{n+2}} + \cos \tfrac{2^r\pi}{2^{n+1}}\bigr) = \tfrac1{2^{n+1}}.$ The left side of that is $$ \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+2}} + \cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+1}} + \cos \tfrac{\pi}{2^{n}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n}} + \cos \tfrac{\pi}{2^{n-1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n-1}} + \cos \tfrac{\pi}{2^{n-2}}\bigr) \cdots \bigl(\cos \tfrac{\pi}{2} + \cos \tfrac{\pi}{4}\bigr).\qquad(**) $$

Use the trig identity $\cos^2\theta = \tfrac12(\cos2\theta+1)$ to write the product of the first two factors in (**) as $$ \bigl( \cos \tfrac{\pi}{2^{n+2}}-\cos \tfrac{\pi}{2^{n+1}}\bigr) \bigl(\cos \tfrac{\pi}{2^{n+2}} + \cos \tfrac{\pi}{2^{n+1}}\bigr) = \cos^2\tfrac{\pi}{2^{n+2}}-\cos^2 \tfrac{\pi}{2^{n+1}} = \tfrac12\bigl( \cos \tfrac{\pi}{2^{n+1}}-\cos \tfrac{\pi}{2^{n}}\bigr).$$ Substitute that into (**) and then repeat the process of combining the first two factors. Each time you do that, it will introduce a factor of 1/2 and decrease by one the number of factors in the product. After doing this $n+1$ times you will be left with $\frac1{2^{n+1}}\bigl( \cos \tfrac{\pi}{2}-\cos \pi\bigr) = \frac1{2^{n+1}}.$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
1
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Back
Top