Petar Mali
- 283
- 0
Homework Statement
Show that the reciprocal cubic of cubic lattice is also cubic.
Homework Equations
cos\alpha*=\frac{cos\beta cos\gamma-cos\alpha}{sin\beta sin\gamma}
cos\beta*=\frac{cos\alpha cos\gamma-cos\beta}{sin\alpha sin\gamma}
cos\gamma*=\frac{cos\alpha cos\beta-cos\gamma}{sin\alpha sin\beta}
\vec{a*}=\frac{\vec{b}\times\vec{c}}{V}
\vec{b*}=\frac{\vec{c}\times\vec{a}}{V}
\vec{c*}=\frac{\vec{a}\times\vec{b}}{V}
The Attempt at a Solution
If I use this formula I will show that \alpha*=\beta*=\gamma*=90^{\circ}
and a*=b*=c*=\frac{1}{a}
and so reciprocal lattice of cubic lattice is cubic. Q.E.D.
But I don't know from where I get this angle relations
cos\alpha*=\frac{cos\beta cos\gamma-cos\alpha}{sin\beta sin\gamma}
cos\beta*=\frac{cos\alpha cos\gamma-cos\beta}{sin\alpha sin\gamma}
cos\gamma*=\frac{cos\alpha cos\beta-cos\gamma}{sin\alpha sin\beta}