MHB Prove Simultaneous Equations: $a+b+c+d \ne 0$

Click For Summary
The simultaneous equations given are abc - d = 1, bcd - a = 2, cda - b = 3, and dab - c = -6. Assuming a + b + c + d = 0 leads to contradictions when substituting into the equations. The analysis shows that either bc = ad or c = -b leads to inconsistencies. Further exploration of the relationships reveals that c = -a or d = -b also results in contradictions. Therefore, it is proven that a + b + c + d cannot equal zero.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The real numbers $a,\,b,\,c$ and $d$ satisfy the following simultaneous equations:

$abc-d=1\\bcd-a=2\\cda-b=3\\dab-c=-6$

Prove that $a+b+c+d \ne 0$.
 
Mathematics news on Phys.org
anemone said:
The real numbers $a,\,b,\,c$ and $d$ satisfy the following simultaneous equations:

$abc-d=1\\bcd-a=2\\cda-b=3\\dab-c=-6$

Prove that $a+b+c+d \ne 0$.

[sp]abc-d=1......(1)

bcd-a=2......(2)

cda-b=3.......(3)

dab-c=-6.......(4)

Supose a+b+c+d=0...(5)
then by adding all the above equations we get:
abc+bcd+cda+dab=0=> bc(a+d)+da(c+b)=0......(6)
But from(5) we have :a+d=-(c+b)............(7)
Substituting (7) into (6) we have : -bc(c+b)+da(c+b)=0=>bc(c+b)-da(c+b)=0=>(c+b)(bc-ad)=0.....(8)
This equality now must give us a contradiction
But(c+b)(bc-ad)=0.=> c=-b or bc=ad
Hence for c=-b the equality (3) becomes : -bda+c=3 and adding to that eqaulity (4) we have:-3=0 a contradiction

Now we have find out if bc=ad give us a contradiction
Now again from(5) we have : $(b+c)^2=(-(a+d))^2\Leftrightarrow b^2+c^2+2bc=a^2+d^2+2ad$...(9)
But since bc=ad (9) becomes :$(b^2-a^2)+(c^2-d^2)=0\Rightarrow (b+a)(b-a)+(c+d)(c-d)=0$.......(10)
But from (5) again we have: (b+a)=-(c+d)..............(11)
And substituting (11) into (10)we have :-(c+d)(b-a)+(c+d)(c-d)=0=>(c+d)(c-d)-(c+d)(b-a)=0=>(c+d)(c-d-(b-a))=0=>(c+d)(c-d-b+a)=(c+d)(c+a-(d+b))=(c+a)(-2(d+b))=0 since from (5) we have (c+a)=-(d+b)

Hence(c+a)(d+b)=0 => c=-a or d=-b
For c=-a (2) becomes -dab+c=2 and adding to it equality (6) wehave: -4=0 a contradiction
for d=-b (3) becomes -cba+d=2 and adding to it equality(1) we have : 4=0 a contradiction again

Hence a+b+c+d is different from zero[/sp]
 
Thanks for participating, solakis!

Suppose $a+b+c+d=0$.

Adding the original equations yields $abc+bcd+cda+dab=0$.

Replacing $d=-a-b-c$, we get

$-b^2c-bc^2-a^2c-ac^2-abc-a^2b-ab^2-abc=0\\-(a+b)(b+c)(c+a)=0$

So we must have either $a=-b,\,a=-c$ or $a=-d$ (since $b+c=0\implies a+d=0)$

$a=-b$ gives $bcd+b=2$ and $-bcd-b=3$, leads to a contradiction.
$a=-c$ gives $bcd+c=2$ and $-bcd-c=-6$, leads to a contradiction.
$a=-d$ gives $bcd+d=2$ and $-bcd-d=1$, leads to a contradiction.

Therefore, $a+b+c+d\ne 0$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K