MHB Prove $\sqrt{\sin x} > \sin\sqrt{x}, 0<x<\frac{\pi}{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt{\sin x}>\sin \sqrt{x}$ for $0<x<\dfrac{\pi}{2}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\sqrt{\sin x}>\sin \sqrt{x}$ for $0<x<\dfrac{\pi}{2}$.
We will prove the result separately for the intervals $(0,1]$ and $\left(1,\frac{\pi}{2}\right]$.

Assume first that $1<x<\frac{\pi}{2}$. Since $0<\sin x < 1$, we have $\sqrt{\sin x}>\sin x$. Since $x>1$, we have $x>\sqrt{x}$, and, as $\sin x$ is an increasing function, $\sin x > \sin \sqrt{x}$. We may therefore conclude:
$$\displaystyle
\sqrt{\sin x}>\sin x>\sin \sqrt{x}
$$
in this case.

Assume now that $0<x\leq 1$. This implies that $x<\sqrt{x}$.

Since $\sqrt{x}>0$, the inequality is equivalent to:
$$\displaystyle
\begin{align*}
\frac{\sqrt{\sin x}}{\sqrt{x}} &> \frac{\sin \sqrt{x}}{\sqrt{x}}\\
\sqrt{\frac{\sin x}{x}} &> \frac{\sin \sqrt{x}}{\sqrt{x}} \\
\sqrt{f(x)} &> f(\sqrt{x})
\end{align*}
$$

where $f(x) = \frac{\sin x}{x}$.

Because $0<f(x)<1$ in the interval under consideration, $\sqrt{f(x)} > f(x)$.

Now, the derivative of $f(x)$ is:
$$\displaystyle
\frac{df}{dx} = \frac{x\cdot\cos x - \sin x}{x^2}
$$

and this is negative, since $0< x< \tan x$. This means that $f$ is strictly decreasing; as $x<\sqrt{x}$, $f(x) > f(\sqrt{x})$, and we conclude:
$$\displaystyle
\sqrt{f(x)} > f(x) > f(\sqrt{x})
$$

which completes the proof.
 
Last edited:
castor28 said:
We will prove the result separately for the intervals $(0,1]$ and $\left(1,\frac{\pi}{2}\right]$.

Assume first that $1<x<\frac{\pi}{2}$. Since $0<\sin x < 1$, we have $\sqrt{\sin x}>\sin x$. Since $x>1$, we have $x>\sqrt{x}$, and, as $\sin x$ is an increasing function, $\sin x > \sin \sqrt{x}$. We may therefore conclude:
$$\displaystyle
\sqrt{\sin x}>\sin x>\sin \sqrt{x}
$$
in this case.

Assume now that $0<x\leq 1$. This implies that $x<\sqrt{x}$.

Since $\sqrt{x}>0$, the inequality is equivalent to:
$$\displaystyle
\begin{align*}
\frac{\sqrt{\sin x}}{\sqrt{x}} &> \frac{\sin \sqrt{x}}{\sqrt{x}}\\
\sqrt{\frac{\sin x}{x}} &> \frac{\sin \sqrt{x}}{\sqrt{x}} \\
\sqrt{f(x)} &> f(\sqrt{x})
\end{align*}
$$

where $f(x) = \frac{\sin x}{x}$.

Because $0<f(x)<1$ in the interval under consideration, $\sqrt{f(x)} > f(x)$.

Now, the derivative of $f(x)$ is:
$$\displaystyle
\frac{df}{dx} = \frac{x\cdot\cos x - \sin x}{x^2}
$$

and this is negative, since $0< x< \tan x$. This means that $f$ is strictly decreasing; as $x<\sqrt{x}$, $f(x) > f(\sqrt{x})$, and we conclude:
$$\displaystyle
\sqrt{f(x)} > f(x) > f(\sqrt{x})
$$

which completes the proof.

Bravo, castor28! You are definitely one of the brightest stars here in MHB!(Happy)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top