Prove that alpha = aleph_alpha where

  • Thread starter Thread starter wj2cho
  • Start date Start date
  • Tags Tags
    Alpha
wj2cho
Messages
20
Reaction score
0
Define alpha_0 = 0, alpha_n+1 = aleph_alpha_n. Let alpha = sup{alpha_n : n is a natural number). Prove that alpha = aleph_alpha.

My attempt: As alpha <= aleph_alpha is obvious, I've been trying to prove the other direction of inequality, so that being both <= and >= implies =, but now I'm not even sure if this is the right approach. I think I cannot use (transfinite) induction because this isn't a statement about n, so I've been stuck with
sup{alpha_n : n is a natural number) >= sup{aleph_beta : beta < alpha}
where the RHS is just the definition of a cardinal aleph_gamma where gamma is a limit ordinal. Maybe I can find an injection from the RHS to the LHS but it doesn't seem to work either. Any help will be appreciated.
 
wj2cho, this may come a bit late (a month after you posted it), but if you are still interested: your definitions seems to be the cardinal equivalent to epsilon-0 ε0. (You can read about epsilon numbers at http://en.wikipedia.org/wiki/Epsilon_numbers_(mathematics).) Of course, you are referring to cardinals, but then we get into the difficulty that the alephs are not subscripted by cardinals, but rather ordinals. Therefore your definition needs to be cleaned up a little. Once it is, then you will want to look at fixed points. Google "fixed points of aleph sequence" for inspiration on how to find the fixed points of your alpha sequence.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top