@batboio Yeah there is a theorem about that: the sum and the product of two analytic functions are also analytic in that interval. If "a" and "b" are fixed, then it's quite easy to prove that f(x)+g(x)=h(x) is also in G; but the problem lies in the fact that the pair (a,b) may be different for different functions. For example for f(x)=e^x, a=-1, b=-1; but for f(x)=sinx, a=0, b=-tan1; and for h(x)=e^x + sinx, a=-1, b= -(1+sin1)/(1+cos1). See the values of "a" and "b" are not constant. What I have been trying to do was to show that for the sum f(x)+g(x)=h(x), we can find the values of "a" and "b" such that 1+b-a!=0 and h(0)+a*h'(0)=0; h(1)+b*h'(1)=0 which would mean that h(x) is also an element of G. But all to no avail!
I was wondering if you have any idea about the dimension of such a vector space (is the dimension infinite?) and how to find the basis in G. Someone suggested that I could use the method of unknown coefficients (I read that up, but couldn't get how to use it in this case).