Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.

  • Thread starter Math100
  • Start date
In summary, we used Abel's summation formula to find the values of the functions ##f(40)## and ##g(40)##, which are equal to 39 and approximately 6.8, respectively. We also proved the equation ##g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt## using this formula.
  • #1
Math100
756
201
Homework Statement
Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
Relevant Equations
Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
 
Physics news on Phys.org
  • #2
Math100 said:
Homework Statement:: Let ## f(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1 ## and ## g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p} ##.
a) Find ## f(40) ## and ## g(40) ##.
b) Prove that ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##.
Relevant Equations:: Abel's summation formula: Suppose ## f ## is a function with a continuous derivative on the interval ## [x, y] ## where ## 0<x<y ##. Then ## \sum_{x\leq n\leq y}a_{n}f(n)=A(y)f(y)-A(x)f(x)-\int_{x}^{y}A(t)f'(t)dt ## with ## A(x)=\sum_{0<n\leq x}a_{n} ## where ## (a_{n})_{n=0}^{\infty} ## is a sequence of real or complex numbers.

Math100 said:
a) ## f(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}1=3+13+23=39 ##

Math100 said:
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
##\approx 6.8##
Math100 said:
b)
Proof:
Let ## f(n)=\log {n} ## and ## a_{n}=1 ## if ## n\leq x ## is prime such that ## n\equiv 3\pmod {10} ## and ## 0 ## otherwise.
By Abel's summation formula, we have
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{1\leq n\leq x}a_{n}f(n)\\
&=A(x)f(x)-\int_{1}^{x}A(t)f'(t)dt\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt.\\
\end{align*}
It is never a good idea to write two different functions by the same letter. Since ##\log (x)## already has a name, why not use it?
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{2\leq n\leq x}a_{n}\log(n)\\
&=A(x)\log(x)-A(2)\log(2)-\int_{2}^{x}A(t)\log'(t)\, dt\\
&=f(x)\log {x}- \left(\sum_{p\leq 2 \atop{p\equiv 3\pmod{10}}} \right)\cdot \log(2)- \int_{2}^{x} \sum_{n=0}^t \dfrac{a_n}{t}\, d t \\
&=f(x)\log {x}- 0\cdot \log(2) - \int_{2}^x \sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)\, dt.
\end{align*}
 
  • Like
Likes Math100
  • #3
fresh_42 said:
##\approx 6.8##

It is never a good idea to write two different functions by the same letter. Since ##\log (x)## already has a name, why not use it?
\begin{align*}
&g(x)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\sum_{2\leq n\leq x}a_{n}\log(n)\\
&=A(x)\log(x)-A(2)\log(2)-\int_{2}^{x}A(t)\log'(t)\, dt\\
&=f(x)\log {x}- \left(\sum_{p\leq 2 \atop{p\equiv 3\pmod{10}}} \right)\cdot \log(2)- \int_{2}^{x} \sum_{n=0}^t \dfrac{a_n}{t}\, d t \\
&=f(x)\log {x}- 0\cdot \log(2) - \int_{2}^x \sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)\, dt.
\end{align*}
How did you get ## g(40)\approx 6.8 ##? I thought it's ## g(40)\approx 2.95 ##.
 
  • #4
I just saw that you made a mistake in the first part of the problem.
$$
f(40)=\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}1=\sum_{p\in \{3,13,23\}}1=3
$$
We add ##1## as often as we get summands, not the primes themselves! That would have been ##\displaystyle{\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}p}=3+13+23=39.##

Math100 said:
How did you get ## g(40)\approx 6.8 ##? I thought it's ## g(40)\approx 2.95 ##.
Math100 said:
## g(40)=\sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\log {p}=\log {3}+\log {13}+\log {23}=\log {897} ##
... and ##\log 897 = \ln 897= 6.7990558\ldots \approx 6.8##

Let's see if the base was ##10## such that ##g(40)=\log_{10}897 \stackrel{?}{\approx} 2.95## as you think. We have a formula. Abel's summation formula is
$$
\sum_{x<n\leq y}a_n \phi(n)=\left(\sum_{0<n\leq y}a_n\right)\phi(y)-\left(\sum_{0<n\leq x}a_n\right)\phi(x)-\int_x^y\left(\sum_{0<n\leq t}a_n\right)\phi'(t)\,dt
$$
in which we set ##\phi(t)=\log(t)## because ##\phi'(t)=\dfrac{d}{dt} \phi(t)=\dfrac{d}{dt} \log(t)=\dfrac{1}{t}.## Thus
\begin{align*}
g(40)&=f(40)\ln (40)-\int_2^{40}\sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=3\cdot \ln(40) - \int_2^3 \dfrac{0}{t}\,dt -\int_3^{13}\dfrac{1}{t}\,dt-\int_{13}^{23}\dfrac{2}{t}\,dt-\int_{23}^{40}\dfrac{3}{t}\,dt\\
&=3\cdot \ln(40) -(\ln(13)-\ln(3))-2\cdot (\ln(23)-\ln(13))-3\cdot (\ln(40)-\ln(23))\\
&=\ln(23)+\ln(13)+\ln(3)=\ln (897)\approx 6.8
\end{align*}
... since we used the natural logarithm in Abel's summation formula. We could have used ##\log_{10}## instead, but this would only have added a factor ##\ln(10)\approx 2.3 ## in every summand and ##2.3 \cdot 2.95 \approx 6.8.##
 
  • Like
Likes Math100
  • #5
fresh_42 said:
I just saw that you made a mistake in the first part of the problem.
$$
f(40)=\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}1=\sum_{p\in \{3,13,23\}}1=3
$$
We add ##1## as often as we get summands, not the primes themselves! That would have been ##\displaystyle{\sum_{p\leq t \atop{p\equiv 3\pmod{10}}}p}=3+13+23=39.##
... and ##\log 897 = \ln 897= 6.7990558\ldots \approx 6.8##

Let's see if the base was ##10## such that ##g(40)=\log_{10}897 \stackrel{?}{\approx} 2.95## as you think. We have a formula. Abel's summation formula is
$$
\sum_{x<n\leq y}a_n \phi(n)=\left(\sum_{0<n\leq y}a_n\right)\phi(y)-\left(\sum_{0<n\leq x}a_n\right)\phi(x)-\int_x^y\left(\sum_{0<n\leq t}a_n\right)\phi'(t)\,dt
$$
in which we set ##\phi(t)=\log(t)## because ##\phi'(t)=\dfrac{d}{dt} \phi(t)=\dfrac{d}{dt} \log(t)=\dfrac{1}{t}.## Thus
\begin{align*}
g(40)&=f(40)\ln (40)-\int_2^{40}\sum_{p\leq t \atop{p\equiv 3\pmod{10}}} \dfrac{dt}{t}\\
&=3\cdot \ln(40) - \int_2^3 \dfrac{0}{t}\,dt -\int_3^{13}\dfrac{1}{t}\,dt-\int_{13}^{23}\dfrac{2}{t}\,dt-\int_{23}^{40}\dfrac{3}{t}\,dt\\
&=3\cdot \ln(40) -(\ln(13)-\ln(3))-2\cdot (\ln(23)-\ln(13))-3\cdot (\ln(40)-\ln(23))\\
&=\ln(23)+\ln(13)+\ln(3)=\ln (897)\approx 6.8
\end{align*}
... since we used the natural logarithm in Abel's summation formula. We could have used ##\log_{10}## instead, but this would only have added a factor ##\ln(10)\approx 2.3 ## in every summand and ##2.3 \cdot 2.95 \approx 6.8.##
Thank you for pointing that out on part a). Also, another part of this question asks to prove that ## g(x)\sim\frac{1}{4}x ## by assuming that ## f(x)\sim\frac{1}{4}\pi(x) ##. By definitions, both ## \pi(x)=\sum_{\substack{prime p\leq x}}1 ## and ## v(x)=\sum_{\substack{prime p\leq x}}\log {p} ## are step functions for ## x\geq 1 ##. In the process of taking the limit of ## \lim_{x\rightarrow \infty}\frac{g(x)}{\frac{1}{4}x}=4\cdot \lim_{x\rightarrow \infty}\frac{g(x)}{x} ##, how to prove that ## \lim_{x\rightarrow \infty}\frac{g(x)}{x}=\frac{1}{4} ## so that ## \lim_{x\rightarrow \infty}\frac{g(x)}{\frac{1}{4}x}=1 ##?
 
  • #6
Let's use the formulas and https://en.wikipedia.org/wiki/Logarithmic_integral_function.
$$
f(x)\approx \dfrac{|\{p\leq x\, : \,p \text{ prime }\}|}{|\{p\leq x\, : \,p \text{ prime }\wedge p\equiv 3\pmod{10}\}|}\approx\dfrac{\pi(x)}{\varphi(10)}=\dfrac{\pi(x)}{4}\approx \dfrac{x}{4\log(x)}
$$
\begin{align*}
g(x)&=f(x)\log(x) - \int_2^x \dfrac{f(t)}{t}\,dt \approx \dfrac{1}{4}\pi(x)\log(x)- \dfrac{1}{4}\int_2^x \dfrac{\pi(t)}{t}\,dt\\
&\approx \dfrac{x}{4} - \dfrac{1}{4}\int_0^x \dfrac{dt}{\log(t)} + \dfrac{1}{4}\int_0^2 \dfrac{dt}{\log(t)}\approx
\dfrac{x}{4} - \dfrac{1}{4}\underbrace{\operatorname{li}(x)}_{\text{logarithmic integral}} +\dfrac{1}{4}\\
&\approx \dfrac{x+1}{4}-\dfrac{1}{4}\dfrac{x}{\log(x)}\underbrace{\left(1+O(\log^{-1}(x))\right)}_{\stackrel{x\to \infty }{\longrightarrow 1}}\\
&\approx \dfrac{x+1}{4}-\dfrac{\pi(x)}{4}
\end{align*}
Thus
$$
\lim_{x \to \infty}\dfrac{g(x)}{x}=\lim_{x \to \infty}\left(\dfrac{1+(1/x)}{4}-\dfrac{1}{4}\cdot \dfrac{\pi(x)}{x}\right)=\dfrac{1}{4}-\lim_{x \to \infty}\dfrac{1}{4\log(x)}=\dfrac{1}{4}
$$
 
  • Like
Likes Math100
  • #7
fresh_42 said:
Let's use the formulas and https://en.wikipedia.org/wiki/Logarithmic_integral_function.
$$
f(x)\approx \dfrac{|\{p\leq x\, : \,p \text{ prime }\}|}{|\{p\leq x\, : \,p \text{ prime }\wedge p\equiv 3\pmod{10}\}|}\approx\dfrac{\pi(x)}{\varphi(10)}=\dfrac{\pi(x)}{4}\approx \dfrac{x}{4\log(x)}
$$
\begin{align*}
g(x)&=f(x)\log(x) - \int_2^x \dfrac{f(t)}{t}\,dt \approx \dfrac{1}{4}\pi(x)\log(x)- \dfrac{1}{4}\int_2^x \dfrac{\pi(t)}{t}\,dt\\
&\approx \dfrac{x}{4} - \dfrac{1}{4}\int_0^x \dfrac{dt}{\log(t)} + \dfrac{1}{4}\int_0^2 \dfrac{dt}{\log(t)}\approx
\dfrac{x}{4} - \dfrac{1}{4}\underbrace{\operatorname{li}(x)}_{\text{logarithmic integral}} +\dfrac{1}{4}\\
&\approx \dfrac{x+1}{4}-\dfrac{1}{4}\dfrac{x}{\log(x)}\underbrace{\left(1+O(\log^{-1}(x))\right)}_{\stackrel{x\to \infty }{\longrightarrow 1}}\\
&\approx \dfrac{x+1}{4}-\dfrac{\pi(x)}{4}
\end{align*}
Thus
$$
\lim_{x \to \infty}\dfrac{g(x)}{x}=\lim_{x \to \infty}\left(\dfrac{1+(1/x)}{4}-\dfrac{1}{4}\cdot \dfrac{\pi(x)}{x}\right)=\dfrac{1}{4}-\lim_{x \to \infty}\dfrac{1}{4\log(x)}=\dfrac{1}{4}
$$
So both ## \pi(x)\approx \frac{x}{\log {x}} ## and ## li(x)\approx \frac{x}{\log {x}} ##? How did you get ## (1+O(\log^{-1} (x))) ##?
 
  • #8
  • Informative
Likes Math100

What is the purpose of proving ## g(x)=f(x)\log {x}-\int_{2}^{x}t^{-1}f(t)dt ##?

The purpose of proving this equation is to show that it is a valid mathematical formula and to demonstrate its relationship to other mathematical concepts. It also allows for further analysis and application of the formula in various fields of science and engineering.

What are the steps involved in proving this equation?

The steps involved in proving this equation may vary depending on the specific context and level of mathematical rigor required. However, some common steps may include defining the variables and functions involved, using basic algebraic manipulations and properties of logarithms and integrals, and providing logical reasoning and justifications for each step.

What assumptions are made in this proof?

In general, proofs make certain assumptions or use previously established theorems or properties as building blocks. In this particular proof, some common assumptions may include the existence and differentiability of the functions involved, the validity of the fundamental theorem of calculus, and the properties of logarithms and integrals.

Can this equation be applied in real-world situations?

Yes, this equation can be applied in various real-world situations, particularly in fields such as physics, economics, and engineering. It can be used to model and analyze various phenomena, such as population growth, radioactive decay, and heat transfer.

What are the potential implications of this equation in the scientific community?

The implications of this equation in the scientific community may include further understanding and exploration of the relationships between logarithms, integrals, and other mathematical concepts. It may also lead to the development of new theories and applications in various fields, as well as potential advancements in technology and innovation.

Similar threads

  • Precalculus Mathematics Homework Help
Replies
17
Views
1K
  • Precalculus Mathematics Homework Help
Replies
2
Views
927
  • Precalculus Mathematics Homework Help
Replies
4
Views
975
  • Precalculus Mathematics Homework Help
Replies
3
Views
915
  • Precalculus Mathematics Homework Help
Replies
1
Views
770
  • Precalculus Mathematics Homework Help
Replies
2
Views
761
  • Precalculus Mathematics Homework Help
Replies
1
Views
887
  • Precalculus Mathematics Homework Help
Replies
14
Views
1K
  • Precalculus Mathematics Homework Help
Replies
1
Views
1K
  • Precalculus Mathematics Homework Help
Replies
12
Views
1K
Back
Top