Prove that the congruences admit a simultaneous solution

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around proving that the congruences \( x \equiv a \pmod{n} \) and \( x \equiv b \pmod{m} \) admit a simultaneous solution if and only if \( \gcd(n, m) \mid (a-b) \). Participants explore the implications of the greatest common divisor in relation to the existence and uniqueness of solutions.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants present various proofs and simplifications regarding the existence of solutions, discussing the role of the greatest common divisor and Bézout's identity. Some suggest alternative formulations to clarify the proof structure.

Discussion Status

The discussion is active, with participants offering different perspectives on the proof and questioning the uniqueness of solutions. Some express confusion regarding specific aspects of the proof, while others reference the Chinese Remainder Theorem as a related concept.

Contextual Notes

Participants note that the original problem requires a proof rather than an application of the Chinese Remainder Theorem, indicating a focus on theoretical understanding rather than algorithmic solutions.

Math100
Messages
823
Reaction score
234
Homework Statement
Prove that the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution if and only if ## gcd(n, m)\mid (a-b); ## if a solution exists, confirm that it is unique modulo ## lcm(n, m) ##.
Relevant Equations
None.
Proof:

Consider the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ##.
Suppose ## \exists ## a solution for ## x ##.
Let ## d=gcd(n, m) ##.
This means ## \exists r, s\in\mathbb{Z} ## such that ## n=dr ## and ## m=ds ##.
Then ## x\equiv a\pmod {n}\implies x=a+nt, t\in\mathbb{Z}, x\equiv b\pmod {m}\implies x=b+mk, k\in\mathbb{Z} ##.
Now we have ## a+nt=b+mk\implies nt-mk=b-a ##.
Observe that substituting for ## m, n ## produces:
## d(sk-rt)=a-b ##.
Thus, ## d=gcd(n, m)\mid (a-b) ##.
Conversely, suppose ## gcd(n, m)\mid (a-b) ##.
Then ## d=gcd(m, n) ## and ## d\mid (a-b) ##.
This means ## dt=a-b ## for some ## t\in\mathbb{Z} ## such that ## d=nx_{0}+my_{0} ##.
Observe that ## dt=nx_{0}t+my_{0}t=a-b\implies my_{0}t+b=a-nx_{0}t ##.
Let ## x\equiv a\pmod {n}, x\equiv b\pmod {m} ## and ## y ## be any other solution.
Since ## y\equiv a\pmod {n} ## and ## y\equiv b\pmod {m} ##,
it follows that ## x\equiv y\pmod {n} ## and ## x\equiv y\pmod {m} ##.
Thus, ## \exists ## a simultaneous solution.
Therefore, the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution
if and only if ## gcd(n, m)\mid (a-b); ## and a solution exists, hence, ## x\equiv y\pmod {lcm(m, n)} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution if and only if ## gcd(n, m)\mid (a-b); ## if a solution exists, confirm that it is unique modulo ## lcm(n, m) ##.
Relevant Equations:: None.

Proof:

Consider the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ##.
Suppose ## \exists ## a solution for ## x ##.
Let ## d=gcd(n, m) ##.
This means ## \exists r, s\in\mathbb{Z} ## such that ## n=dr ## and ## m=ds ##.
Then ## x\equiv a\pmod {n}\implies x=a+nt, t\in\mathbb{Z}, x\equiv b\pmod {m}\implies x=b+mk, k\in\mathbb{Z} ##.
Now we have ## a+nt=b+mk\implies nt-mk=b-a ##.
Observe that substituting for ## m, n ## produces:
## d(sk-rt)=a-b ##.
Thus, ## d=gcd(n, m)\mid (a-b) ##.
Conversely, suppose ## gcd(n, m)\mid (a-b) ##.
Then ## d=gcd(m, n) ## and ## d\mid (a-b) ##.
This means ## dt=a-b ## for some ## t\in\mathbb{Z} ## such that ## d=nx_{0}+my_{0} ##.
Observe that ## dt=nx_{0}t+my_{0}t=a-b\implies my_{0}t+b=a-nx_{0}t ##.
Let ## x\equiv a\pmod {n}, x\equiv b\pmod {m} ## and ## y ## be any other solution.
Since ## y\equiv a\pmod {n} ## and ## y\equiv b\pmod {m} ##,
it follows that ## x\equiv y\pmod {n} ## and ## x\equiv y\pmod {m} ##.
Thus, ## \exists ## a simultaneous solution.
Therefore, the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution
if and only if ## gcd(n, m)\mid (a-b); ## and a solution exists, hence, ## x\equiv y\pmod {lcm(m, n)} ##.
The equivalence proof is correct, a bit confusing, but correct. I am a little bit lost in the uniqueness part.

Let me suggest a hopefully slimmer version:

Consider the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ##.

(a) Let ##x## be such a solution.
Then ##n\,|\,(x-a)## and ##m\,|\,(x-b).##
Moreover, ##\operatorname{gcd}(n,m)\,|\,n \wedge \operatorname{gcd}(n,m\,|\,m.##
Thus ##\operatorname{gcd}(n,m)\,|\,(x-a)\wedge \operatorname{gcd}(n,m)\,|\,(x-b).##
Finally, ##\operatorname{gcd}(n,m)\,|\,[(x-b)-(x-a)]=a-b.##

It follows your proof, only without the many parameters that are necessary to establish equations. The divisibility properties are sufficient.

(b) Conversely, suppose ## \operatorname{gcd}(n, m)\,|\, (a-b), ## i.e. ##\operatorname{gcd}(n, m)\cdot t=a-b## for some ##t\in \mathbb{Z}.##
Bézout's identity guarantees the existence of ##x_0,y_0\in \mathbb{Z}## such that ## \operatorname{gcd}(n, m)=x_0n+y_0m.## Hence
\begin{align*}
x&:=a-nx_0t=\operatorname{gcd}(n,m)\cdot t+b - nx_0t\\&\phantom{:}
=\operatorname{gcd}(n,m)\cdot t +b - \operatorname{gcd}(n,m)\cdot t +y_0m\cdot t=b +my_0t
\end{align*}
is a solution to ##x\equiv a \pmod n## and ##x\equiv b \pmod m## what had to be shown.

This uses again your ideas, only that I name Bézout's identity and save a few parameters. It is easier to read with fewer variables.

(c) Let ##x,y## be two solutions.
Then ##x-y \equiv 0=a-a \pmod n## and ##x-y \equiv 0=b-b \pmod m.## Thus ##n\,|\,(x-y)## and ##m\,|\,(x-y)##. Therefore ##\operatorname{lcm}(n,m)\,|\,(x-y)## or ##x=y+ s\cdot \operatorname{lcm}(n,m).##

Maybe this was what you meant. I just wasn't sure.
 
  • Like
Likes   Reactions: berkeman and Math100
Isn't this given by the Chinese Remainder Theorem? You only need to prove the remainder is Chinese ;).
 
WWGD said:
Isn't this given by the Chinese Remainder Theorem? You only need to prove the remainder is Chinese ;).
Yes, it is. But the question asked for a proof.
 
fresh_42 said:
Yes, it is. But the question asked for a proof.
Doesn't CRT provide conditions on the uniqueness of solutions?
 
WWGD said:
Doesn't CRT provide conditions on the uniqueness of solutions?
According to Wikipedia, the above exercise is basically the CRT, not the algorithmic version, but the theoretical.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K