Meden Agan said:
Still not working, see
here. The numerical value should be ##\dfrac{\pi^2}{16} \approx 0.6168{\color{red}50}...##, different from ##0.6168{\color{red}68}##.
Something must be wrong with the integrand.
I'd rather assume that this tiny error is due to the singularity. If you want to check what I've done, here is it:
The polynomial:
\begin{align*}
y^2&=y(\alpha)^2=9-16\sin^2(\alpha)=9-16x\\
x-1&=-\dfrac{7+y^2}{16}\\
1-2x&=\dfrac{y^2-1}{8}
\end{align*}
\begin{align*}
f(\alpha)f(-\alpha)&=\dfrac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}\\
&=\dfrac{1}{32}\dfrac{(-7-y^2)((-7-y^2)+(9-y^2)y)}{y^2-1}\\
&=\dfrac{1}{32}\dfrac{(y^2+2y-7)(y-1)(y^2+7)}{y^2-1}\\
&=\dfrac{1}{32}\dfrac{(y^2+2y-7)(y^2+7)}{y+1}
\end{align*}
The integral:
##a=\operatorname{arcsin}(1/\sqrt[4]{8})##
\begin{align*}
I&=2\int_{0}^a \operatorname{arcsin} \sqrt{f(\alpha)f(-\alpha)}\,d\alpha=2\int_{0}^a\int_0^1 \sqrt{\dfrac{f(\alpha)f(-\alpha)}{1-f(\alpha)f(-\alpha)t^2}}\,dt\,d\alpha
\end{align*}
\begin{align*}
\sqrt{\dfrac{ f(\alpha)f(-\alpha)}{1-f(\alpha)f(-\alpha)t^2}}&=\sqrt{
\dfrac{ 2^{-5}\dfrac{(y^2+2y-7)(y^2+7) }{y+1} }{ \dfrac{y+1}{y+1} - 2^{-5}\dfrac{(y^2+2y-7)(y^2+7)t^2}{y+1} }}\\
&=\sqrt{\dfrac{(y^2+2y-7)(y^2+7)}{32(y+1)-(y^2+2y-7)(y^2+7)t^2}}\\
&=\dfrac{1}{\sqrt{\dfrac{32(y+1)}{(y^2+2y-7)(y^2+7)}-t^2}}\\
&=\sqrt{\dfrac{(y^2+2y-7)(y^2+7)}{32(y+1)-t^2(y^2+2y-7)(y^2+7)}}\\
I&=2\int_0^a\int_0^1\sqrt{\dfrac{(y^2+2y-7)(y^2+7)}{32(y+1)-t^2(y^2+2y-7)(y^2+7)}}\,dt\,d\alpha
\end{align*}
\begin{align*}
y^2&=9-16\sin^2(\alpha)\\
\sqrt{\dfrac{9-y^2}{16}}&=\sin(\alpha)\,,\,\alpha=\operatorname{arcsin}\left(\sqrt{\dfrac{9-y^2}{16}}\right)\\
\alpha&=0 \longrightarrow y=3\, , \,\alpha=a\longrightarrow y=\sqrt{9-\dfrac{16}{\sqrt{8}}}=\sqrt{9-2\sqrt{8}}\\
\dfrac{dy}{d\alpha}&=-\dfrac{16\sin(\alpha)\cos(\alpha)}{y}
=-\dfrac{\sqrt{144-16y^2}}{y}\cos\left(\operatorname{arcsin}\left(\sqrt{\dfrac{9-y^2}{16}}\right)\right)\\
\dfrac{dy}{d\alpha}&=-\dfrac{\sqrt{144-16y^2}}{y}\sqrt{1-\dfrac{9-y^2}{16}}=-\dfrac{\sqrt{144-16y^2}}{y}\sqrt{\dfrac{y^2+7}{16}}\\
\dfrac{dy}{d\alpha}&=-\dfrac{\sqrt{(9-y^2)(y^2+7)}}{y}\\
d\alpha&=-\dfrac{y\,dy}{\sqrt{(9-y^2)(y^2+7)}}
=-\sqrt{\dfrac{y^2}{(9-y^2)(y^2+7)}}\,dy
\end{align*}
$$
I=2\int_{\sqrt{9-2\sqrt{8}}}^{3}\int_0^1 \sqrt{\dfrac{y^2(y^2+2y-7)}{32(y+1)(9-y^2)-t^2(y^2+2y-7)(y^2+7)(9-y^2)}}\,dt\,dy
$$