MHB Prove that the sequence converges to 0

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Sequence
alexmahone
Messages
303
Reaction score
0
e_{n+1} = e_n/(e_n+2)

If -1 < e_0 < 0, prove that the sequence {e_n} converges to 0.

PS: I haven't learned things like sup and inf yet, so please don't use them.
 
Last edited:
Physics news on Phys.org
Alexmahone said:
e_{n+1} = e_n/(e_n+2)

If -1 < e_0 < 0, prove that the sequence {e_n} converges to 0.

PS: I haven't learned things like sup and inf yet, so please don't use them.

1) Show that the sequence defined inductively is convergent.

2) Let L be the limit of this sequence e_n. Then L will also be the limit of the sequence e_{n+1}. As e_{n+1} = e_n/(e_n+2) it means (in the limit) that L = L/(L+2). Solve for L and show that L=0.
 
ThePerfectHacker said:
1) Show that the sequence defined inductively is convergent.

How do I do that? By showing that it is increasing and bounded above?

Let L be the limit of this sequence e_n. Then L will also be the limit of the sequence e_{n+1}. As e_{n+1} = e_n/(e_n+2) it means (in the limit) that L = L/(L+2). Solve for L and show that L=0.

L^2+2L=L

L^2+L=0

L(L+1)=0

L=0 or -1

Clearly, L can't be -1 because e_0 > -1 and the sequence is increasing. So, L = 0.
 
Last edited:
Alexmahone said:
How do I do that? By showing that it is increasing and bounded above?

Exactly.

Let -1 < x < 0, show that -1 < x/(x+2)< 0.
Also show that x < x/(x+2).

Combining these two facts together this means that whatever e_0 is e_1 will be larger and still between -1 and 0. Then by repeating the same argument e_2 will be larger than e_1 and still between -1 and 0. And so forth. Therefore, e_n is increasing and bounded above by 0.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.

Similar threads

Replies
2
Views
8K
Replies
17
Views
1K
Replies
2
Views
2K
Replies
44
Views
6K
Replies
9
Views
2K
Replies
1
Views
1K
Back
Top