Prove that three functions form a dual basis

Click For Summary
To prove that three functions form a dual basis, one must demonstrate their linear independence without numerical values. The matrix representation of the functions is crucial, and it is confirmed that the matrix is correct and likely regular, which is essential for establishing a basis. The dual space can be constructed from three linearly independent functions, and the goal is to express any linear function in that space as a combination of the given functions. Additionally, understanding the concept of the anti-dual basis is important, which involves finding independent polynomials that satisfy specific conditions. The discussion emphasizes the need for clarity in notation and the importance of the matrix's properties in the proof.
Forco
Messages
6
Reaction score
0

Homework Statement


Homework Equations

[/B]
Z95rV0g.png

The Attempt at a Solution


c2Pb0TP.png

From that point, I don't know what to do. How do I prove linear independence if I have no numerical values? Thank you.
 
Physics news on Phys.org
I think you made some mistakes with your indices calculating the ##F_i(p)##.
Can you tell what ##E^*## is? Do you know any basis of it?
Edit: However, your matrix ##F_i(V_j) = (\frac{1}{j+1} \cdot m_i^{j+1})_{j,i}## seems to be correct. Is it a transformation of basis, i.e. an isomorphism?
 
Last edited:
Yeah, probably got confused with the different sub indices and I'm relatively new to latex, so yeah, sorry. But you said the matrix is correct, so...
That is the dual space of E, a basis can be easily constructed from n linearly independent functions, in this case, three.
And is it a transformation matrix from E \rightarrow E^* ?
 
I've thought it this way. ##E^*## is the vector space of all linear functions ##φ : ℝ^2[t] → ℝ##. The canonical basis of ##E## is ##\{1,t,t^2\}##. So the goal is to write any ##φ∈E^*## as a linear combination of ##F_0,F_1,F_2##, i.e. solve the linear equation ##φ=x_0F_0+x_1F_1+x_2F_2##, i.e. ##φ = (F_i(V_j))_{j,i} \vec{x}##.

In coordinates it is ##φ(1) = φ(1,0,0), φ(t) = φ(0,1,0), φ(t^2) = φ(0,0,1),## and it's a clearer (to me) to write ##F_i(p)=F_i(a_0,a_1,a_2)## instead.
To decide whether the ##F_i## form a basis you will probably need another property given at the beginning. You can either solve the linear equation(s) or find an argument why the matrix is regular.

(For further talk remind me please what is meant by anti-dual basis of ##B^*##. Is it a basis of ##(E^*)^*##?)
 
Yeah, but how do I go on about solving the system with no numbers? That is my main problem...
Also, why is the matrix being regular relevant? Doesn't that just mean that there is a number n such that the entries of A^n are all positive?
Also, the anti dual basis would be the basis for which B^* is the dual basis. Sorry about the confusing terms, I translated the problem from french.
 
Last edited:
Alors. You have numbers, mainly the coordinates. Therefore I wrote e.g ##φ(t)=φ(0,1,0)## and ##F_i(p) = F_i(a_0,a_1,a_2)##. This gives you the equation
$$φ(t)=φ(0,1,0)=\sum_{i=0}^{i=3} x_i F_i(0,1,0)= \frac{1}{2} x_0 m_0^2 + \frac{1}{2} x_1 m_1^2 + \frac{1}{2} x_2 m_2^2$$ and similar the other two. You can also prove that your matrix above is regular. The three (fixed), and (pairwise) different ##m_i## are given constants. (Another triple would give you another basis, so you have to do the work in dependence of the ##m_i##.)

Edit: For the anti-dual basis you will have to find three linear independent polynomials ##p_j = ∑ a_i^{(j)}t^i## such that ##F_i(p_j)=F_i(a_0^{(j)},a_1^{(j)},a_2^{(j)})=δ_{ij}##.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
930
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K