MHB Prove the sum is greater than or equal to one half

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The discussion focuses on proving that for positive real numbers a, b, and c that sum to 1, the inequality $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}$$ holds true. Participants suggest using the AM-GM inequality to establish this result, noting that equality occurs when a, b, and c are equal, specifically at a = b = c = 1/3. The minimum value of the function f(a, b, c) is calculated to be 1/2, confirming the inequality. The conversation highlights the collaborative effort in finding a solution and validating the mathematical approach. The proof effectively demonstrates the relationship between the variables under the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$
 
Mathematics news on Phys.org
My solution:

Let:

$$f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}$$

By cyclic symmetry, we see that the extremum occurs at:

$$(a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

And we find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}$$

Choosing another point on the constraint, such as:

$$(a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$$

We find:

$$f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}$$

Hence, we may conclude:

$$f_{\min}=\frac{1}{2}$$
 
MarkFL said:
My solution:

Let:

$$f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}$$

By cyclic symmetry, we see that the extremum occurs at:

$$(a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

And we find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}$$

Choosing another point on the constraint, such as:

$$(a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$$

We find:

$$f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}$$

Hence, we may conclude:

$$f_{\min}=\frac{1}{2}$$

Very good, MarkFL!(Cool) And thanks for participating!
 
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
 
Very well done, lfdahl, and thanks for participating!(Cool)
 
lfdahl said:
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true
 
anemone said:
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$

[sp]Why not use the AM-GM inequality?

$$a+b+c=1,\quad a,b,c>0 \\\Leftrightarrow\dfrac{a^3}{b^2+c^2}=\dfrac{b^3}{c^2+a^2}=\dfrac{c^3}{a^2+b^2}\Rightarrow a=b=c=\dfrac13$$

$$f(a,b,c)=\dfrac{a^3}{b^2+c^2}+\dfrac{b^3}{c^2+a^2}+\dfrac{c^3}{a^2+b^2}$$

$$\min(f(a,b,c))=3\sqrt[3]{\dfrac{\left(\dfrac13\right)^9}{8\left(\dfrac13\right)^6}}=\dfrac12$$[/sp]
 
Albert said:
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true

Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :o
 
Last edited:
lfdahl said:
Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :o
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
 
  • #10
Albert said:
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!

You´re right again :o
 

Similar threads

Replies
10
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
844
Back
Top