Prove: X Contains at Most n(n-1)/2 Elements in Subset of a Group

  • Thread starter Thread starter the_fox
  • Start date Start date
  • Tags Tags
    Group
the_fox
Messages
28
Reaction score
0
Let G be a group and A a subset of G with n elements such that if x is in A then x^(-1) is not in A. Let X={(a,b) a in A, b in A, ab in A}. Prove that X contains at most n(n-1)/2 elements.
 
Physics news on Phys.org
Hint: X is largest when a,b in A => ab in A.
 
That's how X is defined. What exactly do you mean?
 
Let's see what we are given. We have G as a group and A as a subset of G. Thus, since G is a group, we have the following giveaways:

1) G is closed under the binary operation
2) G is associative under the binary operation
3) G has an identity element
4) G has an inverse for each element

A is a subset of G with n elements, such that each element has it's inverse NOT contained in the set.

Since A is just a subset of G, we cannot assume that it will have an identity (this is only a giveaway if it were a subgroup). Thus, we will have some sort of a max here, meaning, there is a version of A that has the identity, and a version without the identity.

This matters because the inverse of an identity is itself. Thus if we have A with an identity, we'd have to remove it completely from the set since a = a^-1 and a^-1 is not permitted in A. This gives us (n-1) elements.

Now, what happens when A does NOT have the identity? This means you have n elements since each a in A is not a self-inverse.

Thus you have to account for a set that factors in self-inverses, and a set that doesn't. Getting the number of non-inverses just amounts to taking half of the given number of elements of the particular set (since we know through G that each element of A does have an inverse).

Try applying this to X.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top