Proving (A-B) U C ≤ (A U B U C) - (A n B)

  • Thread starter Thread starter taylor81792
  • Start date Start date
taylor81792
Messages
16
Reaction score
0

Homework Statement


The problem I have been given is to prove (A - B) U C is than less or equal to (A U B U C) - (A n B)

The Attempt at a Solution


I've tried starting off with just (A-B) U C. Then I would say how x ε c or x ε (A - B). Also if x ε a, then x ε c and x is not in b. If x ε c, since c is a subset of (A U B U C) , x ε (A U B U C). I don't know if this is right or where to go from here.
 
Physics news on Phys.org
taylor81792 said:

Homework Statement


The problem I have been given is to prove (A - B) U C is than less or equal to (A U B U C) - (A n B)
This is a statement about sets, so the relationship is \subseteq, not ≤.
taylor81792 said:

The Attempt at a Solution


I've tried starting off with just (A-B) U C. Then I would say how x ε c or x ε (A - B). Also if x ε a, then x ε c and x is not in b.
Try to be more careful with the names of the sets, which are A, B, and C, not a, b, and c.
taylor81792 said:
If x ε c, since c is a subset of (A U B U C) , x ε (A U B U C). I don't know if this is right or where to go from here.
 
i'd say that u can use:

AUBUC= lAl + lBl + lCl - lBnCl - lAnBl - lAnCl+lAnBnCl

but I'm not 100% positive just trying to give some help :)
 
My professor said we can also try to prove or find a counterexample to this statement. Let A, B and C be sets. Then (A-B) U C = (A U B U C) - (A n B). I'm not really sure what she means by counterexample.
 
mtayab1994 said:
i'd say that u can use:

AUBUC= lAl + lBl + lCl - lBnCl - lAnBl - lAnCl+lAnBnCl

but I'm not 100% positive just trying to give some help :)
Not only does that not help, it makes no sense. The left side is a set, the right side is a number.

Even if you meant |AUBUC| that is irrelevant to the problem. Showing that two sets have the same size does not prove they are the same set.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top