MHB Proving a Fraction Inequality of Sin and Cos | $\pi/2$

AI Thread Summary
The discussion focuses on proving the inequality \(\frac{\sum_{i=1}^{10}\cos x_i}{\sum_{j=1}^{10}\sin x_j} \ge 3\) under the condition that \(x_1,x_2,...,x_{10} \in [0;\frac{\pi}{2}]\) and \(\sum_{i=1}^{10}\sin^2x_i = 1\). Participants share solutions and methods to approach the proof, with one user, Albert, receiving positive feedback for his contribution. An alternative solution is also mentioned, indicating multiple approaches to the problem. The discussion emphasizes the mathematical reasoning and techniques used to establish the inequality. Overall, the thread highlights collaborative problem-solving in trigonometric inequalities.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
If $x_1,x_2,...,x_{10} \in [0;\frac{\pi}{2}]$ and $\sum_{i=1}^{10}\sin^2x_i = 1.$

- then prove, that:

\[ \frac{\sum_{i=1}^{10}\cos x_i}{\sum_{j=1}^{10}\sin x_j} \ge 3\]
 
Mathematics news on Phys.org
lfdahl said:
If $x_1,x_2,...,x_{10} \in [0;\frac{\pi}{2}]$ and $\sum_{i=1}^{10}\sin^2x_i = 1.$

- then prove, that:

\[ \frac{\sum_{i=1}^{10}\cos x_i}{\sum_{j=1}^{10}\sin x_j} \ge 3\]
my solution:
let $p=\sum_{i=1}^{10}\cos x_i=(cos\,{x_1}+----+\cos\,{x_{10}})$

$q=\sum_{i=1}^{10}\sin x_i=(sin\,{x_1}+----+\sin\,{x_{10}})$
so $1\leq q^2\leq 3 ---(1) $ from $---(2)$
for $x_1,x_2,...,x_{10} \in [0;\frac{\pi}{2}]$ and $\sum_{i=1}^{10}\sin^2x_i = 1.---(2)$
we have :$p\geq \sum_{i=1}^{10}\cos^2x_i = 9.$
so $ \dfrac {p}{q}\geq \dfrac{9}{q^2}---(3)$
from (1)(2)(3) we have :$\dfrac {p}{q}\geq 3$
 
Last edited:
Albert said:
my solution:
let $p=\sum_{i=1}^{10}\cos x_i=(cos\,{x_1}+----+\cos\,{x_{10}})$

$q=\sum_{i=1}^{10}\sin x_i=(sin\,{x_1}+----+\sin\,{x_{10}})$
so $1\leq q^2\leq 3 ---(1) $ from $---(2)$
for $x_1,x_2,...,x_{10} \in [0;\frac{\pi}{2}]$ and $\sum_{i=1}^{10}\sin^2x_i = 1.---(2)$
we have :$p\geq \sum_{i=1}^{10}\cos^2x_i = 9.$
so $ \dfrac {p}{q}\geq \dfrac{9}{q^2}---(3)$
from (1)(2)(3) we have :$\dfrac {p}{q}\geq 3$

Very well done, Albert! Thankyou for your nice solution!
 

Attachments

  • Trig inequality.PNG
    Trig inequality.PNG
    12.8 KB · Views: 98
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top