MHB Proving Absolute Convergence of a Real-Valued Function on a Sigma Algebra

Fermat1
Messages
180
Reaction score
0
Let R be a sigma algebra and let $f$ be a real value function on R such that for a sequence
($A_{n}$) of disjoint members of R, we have that the sum of $f$($A_{n}$) over all n is equal to the image of the countable union under $f$. Prove that the sum of $f$($A_{n}$) is in fact absolutely convergent.
 
Physics news on Phys.org
Since $f$ is a real-valued function, it must be bounded. That is, there exists a constant M such that |$f$($A_{n}$)| $\leq$ M for all n. By the Principle of Finite Sums, we know that the sum of a sequence of finitely many non-negative real numbers is convergent if and only if the sequence of partial sums is increasing and bounded above. Since the sum of $f$($A_{n}$) over all n is equal to the image of the countable union under $f$, the sequence of partial sums is increasing and bounded above by M. Therefore, the sum of $f$($A_{n}$) is absolutely convergent.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K