Proving B=C Given AB=BC and A Non-Singular

  • Thread starter Thread starter nokia8650
  • Start date Start date
nokia8650
Messages
216
Reaction score
0
Given that AB = BC, and that A is non-singular, prove that B =C.

I don't know how to do matrices in these forums, so where I write a matrix, I mean (a,b,c,d)

Given that A = (3,6,1,2) and B = (1,5,0,1), find a matrix C whose elements are all non zero.

I can easily do the second part of the question. I cannot understand the logic of the second part of the question - we have proved that B=C, how can C now be non equivalent to B?

Thanks
 
Physics news on Phys.org
Because the assumption in the first question is that A is non-singular
 
nokia8650 said:
Given that AB = BC, and that A is non-singular, prove that B =C.

I don't know how to do matrices in these forums, so where I write a matrix, I mean (a,b,c,d)

Given that A = (3,6,1,2) and B = (1,5,0,1), find a matrix C whose elements are all non zero.

I can easily do the second part of the question. I cannot understand the logic of the second part of the question - we have proved that B=C, how can C now be non equivalent to B?

Thanks

I think you mean AB=AC. Like VeeEight said, in the first problem A is assumed to be nonsingular. The matrix you gave for A is the second part is singular. Ax=0 for some nonzero vector x. Use that to construct a C.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top