Proving Boundedness of Entire Functions with Harmonic Components

  • Thread starter Thread starter physicsjock
  • Start date Start date
  • Tags Tags
    Bounded
physicsjock
Messages
84
Reaction score
0
Hey,

I'm trying to prove that uv=>0 is bounded so I can state that an entire function is constant when f = u + iv, when f is entire.

I have worked out the rest but I'm struggling to prove that its bounded,

Can you say u=>0, v=>0 then u + v => 0, and that bounded from below?
 
Physics news on Phys.org
physicsjock said:
Hey,

I'm trying to prove that uv=>0 is bounded so I can state that an entire function is constant when f = u + iv, when f is entire.

I'm not sure what you are trying to prove - is it given that u,v are harmonic & uv>=0 ?
 
They gave

f = u + iv is an entire function,

that means u and v are harmonic right?

and it asks to show f is constant if uv=>0 everywhere

I think i have done that part just using louivilles theorem, but i realized i was just assuming u and v were bounded
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top