Proving continuity of inverse cube function

Click For Summary
SUMMARY

The discussion focuses on proving the continuity of the inverse cube function through a two-step process: first, establishing a lemma and then applying it to derive the main result. The lemma defines the function g(x) = √[3]{x²} + √[3]{xa} + √[3]{a²}, which is shown to be bounded from below by a positive constant m. The proof demonstrates that for any ε > 0, a suitable δ can be chosen to satisfy the continuity condition, confirming that the inverse cube function is continuous for a ≠ 0 and a = 0.

PREREQUISITES
  • Understanding of real analysis concepts, particularly continuity.
  • Familiarity with cube root functions and their properties.
  • Knowledge of limits and epsilon-delta definitions in calculus.
  • Basic algebraic manipulation skills, especially with inequalities.
NEXT STEPS
  • Study the properties of cube root functions in detail.
  • Learn about epsilon-delta proofs in real analysis.
  • Explore the implications of continuity in higher-dimensional functions.
  • Investigate other methods for proving continuity, such as using the Mean Value Theorem.
USEFUL FOR

Mathematicians, students of real analysis, and educators looking to deepen their understanding of continuity proofs and the behavior of cube root functions.

Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
Let ##f:\mathbb{R}\longrightarrow \mathbb{R}## be defined by ##f(x)=\sqrt[3]{x}##. Prove that for all ##\epsilon>0##, there is a ##\delta>0## such that for ##a\in \mathbb{R}##, if ##|x-a|<\delta## for ##x\in \mathbb{R}##, then ##|\sqrt[3]{x}-\sqrt[3]{a}|<\epsilon##.
Relevant Equations
Difference of cubes formula: ##x^3-a^3=(x-a)(x^2+xa+a^2)##
No theorems allowed; must show by basic epsilon-delta proof.
The proof is given in two steps
1. Prove the lemma.
2. Use lemma to prove result.

%%1-Lemma%%
Assume ##a\neq0##. Define ##g:(-(|a|+1),|a|+1)\longrightarrow \mathbb{R}## by ##g(x)=\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}##. Then ##g## is bounded from below by some positive number ##m##.
---proof---
\begin{align}
g(x)&=&\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\\
&=&\sqrt[3]{x^2}+\sqrt[3]{xa}+\frac{1}{4}\sqrt[3]{a^2}+\frac{3}{4}\sqrt[3]{a^2}\\
&=&\left(\sqrt[3]{x}+\frac{1}{2}\sqrt[3]{a}\right)^2+\frac{3}{4}\sqrt[3]{a^2}\\
&\geq&\frac{3}{4}\sqrt[3]{a^2}\\
&=&m
\end{align}

%%2-Attempt at Proof%%
Let ##\epsilon>0## and set ##\delta\leq\min\{1,\frac{\epsilon}{m}\}##. For ##a\neq0##, if ##|x-a|=|\sqrt[3]x-\sqrt[3]a|\left|\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\right|<\delta##, then:

\begin{align}
1&>&|x-a|\\
&\geq&||x|-|a||\\
&\geq&|x|-|a|
\end{align}

This implies that ##|x|<1+|a|##, which gives the necessary condition for the lemma.

\begin{align}
\left|\sqrt[3]x-\sqrt[3]a\right|&=&\frac{|x-a|}{\left|\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\right|}\\
&=&\frac{|x-a|}{\left|g(x)\right|}\\
&\leq&\frac{|x-a|}{m}\\
&<&\delta\cdot m\\
&\leq&\frac{\epsilon}{m}\cdot m\\
&<&\epsilon
\end{align}

If ##a=0##, then set ##\delta=\epsilon^3## so that if ##|x|<\delta##, then ##\left|\sqrt[3]x\right|<\delta^{\frac{1}{3}}=(\epsilon^3)^\frac{1}{3}=\epsilon##.
 
Last edited:
Physics news on Phys.org
Couldn't we simply take ##|x-a| \lt 1## and then get a bound for ##|x^2 + xa + a^2|##?
 
Hall said:
Couldn't we simply take ##|x-a| \lt 1## and then get a bound for ##|x^2 + xa + a^2|##?
This is the usual approach for this and similar proofs.
 

Similar threads

  • · Replies 31 ·
2
Replies
31
Views
2K
Replies
4
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K