Proving Expectations at Infinity in a Paper: Tips and Tricks

feryee
Messages
9
Reaction score
0
While reading a paper, i came across the following Expectations:

Given that the ##E\left\{e^2_{n-i-1}e^2_{n-j-1}\right\}=E\left\{e^2_{n-i-1}\right\}E\left\{e^2_{n-j-1}\right\}## for ##i\neq j##.\\

Then as ##n\rightarrow\infty##

##E\left\{\left(\sum\limits_{i=0}^{n-2}\alpha^i e^2_{n-i-1}\right)\left(\sum\limits_{i=0}^{n-2}\alpha^i e^2_{n-i-1}\right)\right\}=\frac{2\alpha\left(E\left( e_\infty^2\right)\right)^2}{(1-\alpha)^2(1+\alpha)}+\frac{E\left( e_\infty^4\right)}{(1-\alpha^2)}##.

Can you provide me with proof or any hint/help? I tried but couldn't get the same answer.Thanks
 
Last edited:
Physics news on Phys.org
feryee said:
While reading a paper, i came across the following Expectations:

Given that the $E\left\{e^2_{n-i-1}e^2_{n-j-1}\right\}=E\left\{e^2_{n-i-1}\right\}E\left\{e^2_{n-j-1}\right\}$ for $i\neq j$.\\

Then as $n\rightarrow\infty$

$E\left\{\left(\sum\limits_{i=0}^{n-2}\alpha^i e^2(n-i-1)\right)\left(\sum\limits_{i=0}^{n-2}\alpha^i e^2(n-i-1)\right)\right\}=\frac{2\alpha\left(E\left( e_\infty^2\right)\right)^2}{(1-\alpha)^2(1+\alpha)}+\frac{E\left( e_\infty^4\right)}{(1-\alpha^2)}$.

Can you provide me with proof or any hint/help? I tried but couldn't get the same answer.Thanks

Those latex expressions are not displaying on my browser.

PS Is this homework?
 
PeroK said:
Those latex expressions are not displaying on my browser.

PS Is this homework?
No, This is an equation in a paper.(Eq 17 in ''New Steady-state analysis result for variable step-size LMS algorithm with different noise distributions'')
 
feryee said:
While reading a paper, i came across the following Expectations:

Given that the ##E\left\{e^2_{n-i-1}e^2_{n-j-1}\right\}=E\left\{e^2_{n-i-1}\right\}E\left\{e^2_{n-j-1}\right\}## for ##i\neq j##.\\

Then as ##n\rightarrow\infty##

##E\left\{\left(\sum\limits_{i=0}^{n-2}\alpha^i e^2_{n-i-1}\right)\left(\sum\limits_{i=0}^{n-2}\alpha^i e^2_{n-i-1}\right)\right\}=\frac{2\alpha\left(E\left( e_\infty^2\right)\right)^2}{(1-\alpha)^2(1+\alpha)}+\frac{E\left( e_\infty^4\right)}{(1-\alpha^2)}##.

Can you provide me with proof or any hint/help? I tried but couldn't get the same answer.Thanks
More information is needed. Specifically: define e_k.
 
mathman said:
More information is needed. Specifically: define e_k.
Thank you all for your comments. I finally proved it.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top