Proving F is Finite: A Perspective on Ring Homomorphisms

  • Thread starter Thread starter dogma
  • Start date Start date
  • Tags Tags
    Ring
dogma
Messages
35
Reaction score
0
Let f: Z \rightarrow F be a ring homomorphism from Z onto a field F. Prove that F must be finite with a prime number of elements.

How would one go about proving this? I understand that multiplication and addition must be preserved in a homomorphism. I guess I must somehow show that a proper factor ring of Z is finite, but I'm not sure how.

I'd greatly appreciate any help. Thanks!
 
Last edited:
Physics news on Phys.org
Look at the kernel. Suppose it's {0}. Then F is infinite, isomorphic to Z. Z isn't a field, so that's no good. So the kernel is nZ for some nonzero n. So F is isomorphic to Z/nZ for some n.
 
Thanks, Euclid.

That was the ticket to get me on the right path.

Take care.
 
another point of view is to recognize that an onto homomorphism is another way of thinking of a qupotient construction in the opriginal ring.

i.e. up to isomorphism, the only possible onto homomorphisms are of form R-->R/I, where I is an ideal in R. So just ask what the ideals are in Z. The only ones that give f8ields are maximal ideals, and the only maximal ideals in Z are of form Zp where p is prime, so the only possible fields of form Z/I are the finite fields Z/p.

this is another view on the same answer above. but the moral is that all the information about an onto homomorphism is already contained in the original ring. i.e. an onto map is just a way of making identifications in the original ring.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top