Proving function discontinuous at zero

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Function Proof
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1715473246207.png

THe solution is,
1715473263511.png

However, does someone please know why from this step ##-1 \leq \cos(\frac{1}{x}) \leq 1## they don't just do ##-x \leq x\cos(\frac{1}{x}) \leq x## from multiplying both sides by the monomial linear function ##x##

##\lim_{x \to 0} - x = \lim_{x \to 0} x= 0## then use squeeze principle and reach the same conclusion as them

Thanks!
 
Physics news on Phys.org
When ##x## goes to 0, you do not know if it is positive or negative. If it is negative, then ##-x \le x## is false. Using the absolute values, ##-|x| \le |x|## solves that problem.
 
  • Love
Likes member 731016
If ##f(x)## is a continuous function, then ##\lim_{x \to a} f(x)= f(a)\;\;(*).## Hence, if we assume - in order to derive a contradiction - that ##f(x)=x \cdot \cos(x^{-1})## was continuous, and ##-|x|\leq f(x)\leq |x|## for ##x\neq 0##, then both together results in
$$
0=\lim_{x \to 0} (-|x|) \leq \lim_{ \array{ x \to 0 \\ x\neq 0} } f(x)=\lim_{ \array{ x \to 0 \\ x\neq 0} }(x\cdot\cos(x^{-1}))\leq \lim_{x \to 0}|x|=0.
$$
With ##(*)## we get ##\displaystyle{\lim_{\array{ x \to 0 \\ x\neq 0}} f(x)=\lim_{\array{ x \to 0 \\ x\neq 0}}(x\cdot\cos(x^{-1}))=f(0)=0}## if ##f(x)## was continuous. Since ##f(0)=2,## ##f(x)## cannot be continuous at ##x=0.##
 
  • Love
Likes member 731016
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top