vela
Staff Emeritus
Science Advisor
Homework Helper
- 16,211
- 2,871
You know that
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt k} > 2(\sqrt{n+1}-1) + \frac {1}{\sqrt{n+1}}.$$ Starting from there, you have to find a chain of true implications that eventually ends with
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt k} > 2(\sqrt{n+2}-1).$$ A few posts back you said that you found
$$2(\sqrt{n+1}-1) + \frac {1}{\sqrt{n+1}} = \frac{2n+3-2\sqrt{n+1}}{\sqrt{n+1}}.$$ First, do a little algebra and show that this means
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt k} > 2\left[\frac{n+\frac 32}{\sqrt{n+1}} - 1\right].$$ If you can now show that
$$2\left[\frac{n+\frac 32}{\sqrt{n+1}} - 1\right] > 2(\sqrt{n+2}-1),$$ you can use the transitive property of > to get the result you want. It's clear that this inequality holds if you can show that
$$\frac{n+\frac 32}{\sqrt{n+1}} > \sqrt{n+2}.$$ To prove this last inequality holds, you have to start with a statement that's undeniably true and go from there. What you can't do is start by assuming the inequality is true because that's what you're trying to prove.
What I suggest is that you start with
$$\sqrt{n+2} = \sqrt{n+2}\frac{\sqrt{n+1}}{\sqrt{n+1}}.$$ The goal is to use the rules of algebra to continue to manipulate the righthand side that so that's it's readily apparent that it's less than ##\frac{n+\frac 32}{\sqrt{n+1}}##.
You've already done most of the work. It's just putting everything in the right order to make a valid logical argument.
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt k} > 2(\sqrt{n+1}-1) + \frac {1}{\sqrt{n+1}}.$$ Starting from there, you have to find a chain of true implications that eventually ends with
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt k} > 2(\sqrt{n+2}-1).$$ A few posts back you said that you found
$$2(\sqrt{n+1}-1) + \frac {1}{\sqrt{n+1}} = \frac{2n+3-2\sqrt{n+1}}{\sqrt{n+1}}.$$ First, do a little algebra and show that this means
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt k} > 2\left[\frac{n+\frac 32}{\sqrt{n+1}} - 1\right].$$ If you can now show that
$$2\left[\frac{n+\frac 32}{\sqrt{n+1}} - 1\right] > 2(\sqrt{n+2}-1),$$ you can use the transitive property of > to get the result you want. It's clear that this inequality holds if you can show that
$$\frac{n+\frac 32}{\sqrt{n+1}} > \sqrt{n+2}.$$ To prove this last inequality holds, you have to start with a statement that's undeniably true and go from there. What you can't do is start by assuming the inequality is true because that's what you're trying to prove.
What I suggest is that you start with
$$\sqrt{n+2} = \sqrt{n+2}\frac{\sqrt{n+1}}{\sqrt{n+1}}.$$ The goal is to use the rules of algebra to continue to manipulate the righthand side that so that's it's readily apparent that it's less than ##\frac{n+\frac 32}{\sqrt{n+1}}##.
You've already done most of the work. It's just putting everything in the right order to make a valid logical argument.