Proving Non-Simplicity of Algebra with Two Generators

  • Thread starter Thread starter semisimple
  • Start date Start date
  • Tags Tags
    Algebra Generators
semisimple
Messages
4
Reaction score
0
Hi,
I have been asked to prove that an algebra with only two generators can not be simple. I have thought about it and have tried to show that one of the two structure constants go to zero in the Lie algebra condition that [xi,xj]=sumoverk Cijkxk , but I can't find any way to show that (using the Bianci Identity, for example), and perhaps I am thinking about it the wrong way. I have also tried to think about it logically - perhaps it contains the identity for some reason and any algebra containing the identity is not simple.
I would appreciate any hints people might give me.
 
Physics news on Phys.org
You can't mean just 'algebra', can you? The quaternionic fields are algebras and have 2 generators. They are skew fields, hence simple (no ideals), indeed they are central simple algebras, aren't they?

Perhaps you mean 'Lie Algebra'? Indeed you must mean something other than 'algebra' by your last assertion that any algebra with an identity is not simple (the full matrix algebra of nxn matrices over some field is simple and has an identity).

Simple lie algebras are copies of sl_2 glued together. That's one starting point, I don't know how far it'll get you.
 
Last edited:
Hi Matt,
From what you say it must be Lie Algebras that I have to prove it for. The question just said "prove that an algebra...", but the title of the questions in general says "Lie Algebras". I was unsure at first, but decided he must mean Lie Algebra for that question. Sorry I didn't specify. I will think about sl2 idea.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top