Proving Noncompactness of Unit Ball in Infinite-Dimensional Banach Space

dextercioby
Science Advisor
Insights Author
Messages
13,388
Reaction score
4,042
Is the fact that a unit ball in an infinite-dimensional (Banach) space is a noncompact topological space...?

If it is, how would one go about proving it...?

Daniel.
 
Mathematics news on Phys.org
dextercioby said:
Is the fact that a unit ball in an infinite-dimensional (Banach) space is a noncompact topological space...?

If it is, how would one go about proving it...?

Daniel.

I found a proof in Kreyszig.

Every Banach space is a metric space, and in a compact subset of a metric space, every sequence has a convergent subsequence.

Kreyszig assumes that the closed unit ball of an infinite-dimensional Banach space is compact. He then uses Riesz's Lemma (which isn't the Riesz Representation Theorem) to construct a sequence that doesn't have convergent subsequence.

Conclusion: the closed unit ball of a Banach space is compact if and only if the Banach space is finite-dimensional.

Regards,
George
 
Thank you, George.

Daniel.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top