Proving One-to-One Function Strictly Increasing on Interval I

  • Thread starter Thread starter staw_jo
  • Start date Start date
  • Tags Tags
    Function
staw_jo
Messages
4
Reaction score
0
I am having trouble with this study question for my final:

A function from the real numbers to the real numbers is one to one on an interval I if it is strictly increasing on that interval.

I am not quite sure how to prove it, I know that the use of strictly increasing is important as far as if x1 < x2, then f(x1) < f(x2). A hint I was told to use is contradiction.

Any help please!
 
Physics news on Phys.org
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top