stauros
- 35
- 0
Prove if the following set is open
\displaystyle{A=\begin{cases}<br /> \vec{x}=(x_1,...,x_n)\in\mathbb{R}^n:x_n>0\\<br /> \end{cases}} .
I have written the following proof and please correct me if i am wrong
Let : \displaystyle{\vec{x}\in A}
Then we have : \displaystyle{\vec{x}=(x_1,...,x_n)} with \displaystyle{x_n>0}
Choose \epsilon such that \displaystyle{0<\epsilon<x_n} and then \displaystyle{B(\vec{x},\epsilon)\subseteq A}
This happens because if \displaystyle{\vec{y}=(y_1,...,y_n)\in B(\vec{x},\epsilon)} then \displaystyle{||\vec{y}-\vec{x}||<\epsilon}
and \displaystyle{y_i\in\left(x_i-\epsilon,x_i+\epsilon\right)}
Then we have \displaystyle{y_n\in\left(x_n-\epsilon,x_n+\epsilon\right)} and thus \displaystyle{y_n>0}[/quote]
\displaystyle{A=\begin{cases}<br /> \vec{x}=(x_1,...,x_n)\in\mathbb{R}^n:x_n>0\\<br /> \end{cases}} .
I have written the following proof and please correct me if i am wrong
Let : \displaystyle{\vec{x}\in A}
Then we have : \displaystyle{\vec{x}=(x_1,...,x_n)} with \displaystyle{x_n>0}
Choose \epsilon such that \displaystyle{0<\epsilon<x_n} and then \displaystyle{B(\vec{x},\epsilon)\subseteq A}
This happens because if \displaystyle{\vec{y}=(y_1,...,y_n)\in B(\vec{x},\epsilon)} then \displaystyle{||\vec{y}-\vec{x}||<\epsilon}
and \displaystyle{y_i\in\left(x_i-\epsilon,x_i+\epsilon\right)}
Then we have \displaystyle{y_n\in\left(x_n-\epsilon,x_n+\epsilon\right)} and thus \displaystyle{y_n>0}[/quote]