Proving Set Theory Problem: Counterexample for (A-B)intersect(A-C)=empty set

physicsgirlie26
Messages
42
Reaction score
0
I was wondering if someone could please look over my proof of this set theory problem and let me know if I am doing it right or not and give me some help.


Provide a counterexample for the following:

If (A-B)intersect(A-C)=empty set, then B intersect C = empty set.

Proof:

Assume that (A-B)intersect(A-C) does not equal the empty set. Let A={4,26}, B={4,23}, and C={26,23}. Since (A-C)=26 and (A-C)=4, that means that (A-B)intersect(A-C) does not equal the empty set. So B intersect C equals 23 which is also not the empty set.


Thank you for your help! :smile:
 
Physics news on Phys.org
physicsgirlie26 said:
I was wondering if someone could please look over my proof of this set theory problem and let me know if I am doing it right or not and give me some help.


Provide a counterexample for the following:

If (A-B)intersect(A-C)=empty set, then B intersect C = empty set.

Proof:

Assume that (A-B)intersect(A-C) does not equal the empty set. Let A={4,26}, B={4,23}, and C={26,23}. Since (A-C)=26 and (A-C)=4, that means that (A-B)intersect(A-C) does not equal the empty set. So B intersect C equals 23 which is also not the empty set.


Thank you for your help! :smile:

that doesn't quite work, to show

If (A-B)intersect(A-C)=empty set, then B intersect C = empty set is a false statement, you need to find A, B, C such that (A-B)intersect(A-C)=empty set but B intersect C != empty set
 
Ok how about this:

Proof:

Let A={4,26}, B={4,23}, and C={26,23}. If (A-C)=26 and (A-C)=4, that means that (A-B)intersect(A-C) equals the empty set. But B intersect C = 23 which is not the empty set, therefore there is a contradiction.

How is that?
 
physicsgirlie26 said:
Ok how about this:

Proof:

Let A={4,26}, B={4,23}, and C={26,23}. If (A-C)=26 and (A-C)=4, that means that (A-B)intersect(A-C) equals the empty set. But B intersect C = 23 which is not the empty set, therefore there is a contradiction.

How is that?

good work :)

(I think you mean A-B = {26} though)
 
haha got it!


Thank you!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top