- #1

ehrenfest

- 2,020

- 1

**[SOLVED] Sylow p-subgroups**

## Homework Statement

Let G be a finite group and let primes p and q \neq p divide |G|. Prove that if G has precisely one proper Sylow p-subgroup, it is a normal subgroup, so G is simple.

EDIT: that should say "G is not simple"

## Homework Equations

## The Attempt at a Solution

I don't see the point of q. If G has precisely one proper Sylow p-subgroup, then you can conjugate with all the elements of the group and you cannot get of the subgroup or else you would have another Sylow-p-subgroup, right? So, it must be normal, right?

Last edited: