Proving that d=gcd(a,b) iff 1=gcd(a1,b1)

  • Thread starter Thread starter mathrocks
  • Start date Start date
mathrocks
Messages
105
Reaction score
0
I'm having trouble with gcd proofs in general, but here is a specific problem.

Let a and b be integers, not both zero, and let d be a positive integer that divides both a and b. Then there exists a1 and b1 such that a=a1*d and b=b1*d.
Prove that d=gcd(a,b) if and only if 1=gcd(a1,b1)

What I have so far:

Pf: Let a and b be integers and since d|a and d|b then d|gcd(a,b) by definition. So let d*k=gcd(a,b) for some integer k. Then dk=ma+nb where m,n are integers. (I'm not sure if I can do that last statement). Now dk=m(a1*d)+n(b1*d) where a=a1*d and b=b1*d. So dk=d(m*a1+n*b1) and therefore d|(m*a1+n*b1) ...

I'm not sure if I'm heading in the right direction, but after that point I don't know how to get to 1=gcd(a1,b1).

For the second part of the proof I have"

Now assume a and b are integers such that 1=gcd(a1,b1). So there exists m and n that are integers such that 1=ma1+nb1. (Now I multiple by a integer d). Then d=md*a1 + nd*b1, and d=ma+nb where a1*d=a and b1*d=b.

Again, I'm stuck after this point.
 
Physics news on Phys.org
I think you're making it far too complicated.

Let's do this way: suppose that gcd(a1,b1)=e and e is different from 1. Then a1=ea2 and b1=eb2 for some integers a2 and b2, then a=a2ed, and b=b2ed.

So, if d is the gcd, then e cannot be different from 1 as claimed, or de divides both a and b.

For the second part, if ass ume gcd(a1,b1)=1 we can indeed conclude that d=am+bn, but this tells us that gcd(m,n) divides d, since the gcd divides the terms on the right. So d is less than gcd(a,b) since it is some divisor of a and b, and is also divisible by the gcd so it must equal the gcd.
 
This was mathrocks' question: a,b \in Z a,b \neq 0, and d=gcd(a,b). If a=da_1 and b=db_1 for some a_1, b_1 \in Z then you want to show that gcd(a_1,b_1) = 1.

I can't follow matt grime's proof but I know that there is a theorem which states:

Let d=gcd(a,b). Then there exists integers x and y such that d=ax+by.

I want to know how we can prove the problem above using this theorem.

d=gcd(a,b)

d=ax + by and since a=da_1 and b=db_1,

d=(da_1)x + (db_1)y = (dx)a_1 + (dy)b_1

I'm stuck at this point. Can anyone help please?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top