Lucretius
- 151
- 0
Homework Statement
4.8 Show the following continuous theorem for sequences: if a_n \rightarrow L and f is a real valued function continuous at L, then bn = f(a_n) \rightarrow f(L).
Homework Equations
No real relevant equations here. Just good old proof I'm thinking.
The Attempt at a Solution
Well, I stared at this for an hour today. I was able to complete the rest of the assignment but this one has me stumped. I realize that \displaystyle\lim_{n\rightarrow\infty}a_n=L and that for a real-valued function to be continuous at L that \displaystyle\lim_{x\rightarrow x_0}f(x)=f(x_0)=L. I don't know what to do from here though. How do I get f(L) from f(x0)=L, and then get f(a_n) from just plain old a_n. This thing makes intuitive sense to me; it's blatantly obvious it's right - proving it has ... well.. proven to be really hard!