Proving the Equivalence of √(1) and √(-1)(-1)

  • Thread starter Thread starter Yh Hoo
  • Start date Start date
  • Tags Tags
    Equivalence
Yh Hoo
Messages
73
Reaction score
0
1 = √(1)
= √(-1)(-1)
= (√-1)(√-1)
= i.i
= i^{2}
= -1
Is this a correct equation??
anythings wrong with this?
i think theoretically it is correct but it seems like
√(1) = √(-1)(-1)
√(1) = √(1)(1) also!
so how to explain this??
 
Mathematics news on Phys.org
Yh Hoo said:
1 = √(1)
= √(-1)(-1)
= (√-1)(√-1)
= i.i
= i^{2}
= -1
Is this a correct equation??
anythings wrong with this?
i think theoretically it is correct but it seems like
√(1) = √(-1)(-1)
√(1) = √(1)(1) also!
so how to explain this??



Squaring is a double branched complex variable function, and thus "usual" properties in real numbers can fail miserably.

In this case the problem appears in the third equality: it isn't true without imposing certain restrictive conditions.

DonAntonio
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top