Proving the Pauli Matrix Identity with Ordinary Vectors: A Simplified Approach

Click For Summary
SUMMARY

The discussion focuses on proving the Pauli matrix identity using ordinary vectors, specifically demonstrating that \( \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) = \vec{a} \cdot \vec{b} I_2 + i \sigma \cdot \left( \vec{a} \times \vec{b}\right) \). Participants clarify that \( \vec{\sigma} \) is a vector of matrices formed from the three 2x2 Pauli spin matrices, \( \sigma_1, \sigma_2, \sigma_3 \). The correct approach involves recognizing \( \vec{\sigma} \cdot \vec{a} \) as a linear combination of the Pauli matrices weighted by the components of vector \( \vec{a} \), leading to a matrix representation that simplifies the multiplication process.

PREREQUISITES
  • Understanding of Pauli matrices and their properties
  • Familiarity with vector algebra in three-dimensional space
  • Knowledge of complex numbers and their operations
  • Basic linear algebra concepts, particularly matrix multiplication
NEXT STEPS
  • Study the derivation of the Pauli matrix identity in quantum mechanics
  • Learn about the properties of cross products in vector calculus
  • Explore the representation of quantum states using matrices
  • Investigate applications of Pauli matrices in quantum computing
USEFUL FOR

Students and professionals in physics, particularly those studying quantum mechanics, as well as mathematicians interested in linear algebra and matrix theory.

ognik
Messages
626
Reaction score
2
I'm not sure I have the right approach here:

Using the three 2 X 2 Pauli spin matrices, let $ \vec{\sigma} = \hat{x} \sigma_1 + \hat{y} \sigma_2 +\hat{z} \sigma_3 $ and $\vec{a}, \vec{b}$ are ordinary vectors,

Show that $ \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) = \vec{a} \cdot \vec{b} I_2 + i \sigma \cdot \left( \vec{a} \times \vec{b}\right)$

I'm not sure how to go about this - the $i$ in the last term suggests to me that I have to laboriously multiply both sides ...

But the Pauli matrices are 2 X 2 , ex. $ \sigma_1 = \begin{bmatrix}0&1\\ 1&0\end{bmatrix}$ and $\vec{\sigma}$ appears to be Cartesian 3-D.

So I tried $ \vec\sigma \cdot \vec{a} = \hat{x} \sigma_1 \cdot \vec{a} + ... = \begin{bmatrix}1\\ 0 \\ 0 \end {bmatrix} \left( \begin{bmatrix}0&1\\1&0\end{bmatrix} \cdot \begin{bmatrix}a_1\\ a_2 \end {bmatrix} \right) + ...$

Not possible to multiply out like this, so keep the unit vectors as $\hat{x}$ etc. ...

I then get $ \vec\sigma \cdot \vec{a} = \hat{x} \begin{bmatrix}a_2 \\ a_1 \end {bmatrix} +\hat{y} \begin{bmatrix} -a_2\\ a_1 \end {bmatrix} +\hat{z} \begin{bmatrix}a_1\\ -a_2 \end {bmatrix} $ and for $\vec{\sigma} \cdot \vec{b}$ a very similar eqtn by symmetry.

But again I won't be able to multiply out $ \left( \vec\sigma \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) $ because of different matrix ranks? Must be a better way to do this (one that also works :-))
 
Physics news on Phys.org
ognik said:
I'm not sure I have the right approach here:

Using the three 2 X 2 Pauli spin matrices, let $ \vec{\sigma} = \hat{x} \sigma_1 + \hat{y} \sigma_2 +\hat{z} \sigma_3 $ and $\vec{a}, \vec{b}$ are ordinary vectors,

Show that $ \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) = \vec{a} \cdot \vec{b} I_2 + i \sigma \cdot \left( \vec{a} \times \vec{b}\right)$

I'm not sure how to go about this - the $i$ in the last term suggests to me that I have to laboriously multiply both sides ...

But the Pauli matrices are 2 X 2 , ex. $ \sigma_1 = \begin{bmatrix}0&1\\ 1&0\end{bmatrix}$ and $\vec{\sigma}$ appears to be Cartesian 3-D.

So I tried $ \vec\sigma \cdot \vec{a} = \hat{x} \sigma_1 \cdot \vec{a} + ... = \begin{bmatrix}1\\ 0 \\ 0 \end {bmatrix} \left( \begin{bmatrix}0&1\\1&0\end{bmatrix} \cdot \begin{bmatrix}a_1\\ a_2 \end {bmatrix} \right) + ...$

Not possible to multiply out like this, so keep the unit vectors as $\hat{x}$ etc. ...

I then get $ \vec\sigma \cdot \vec{a} = \hat{x} \begin{bmatrix}a_2 \\ a_1 \end {bmatrix} +\hat{y} \begin{bmatrix} -a_2\\ a_1 \end {bmatrix} +\hat{z} \begin{bmatrix}a_1\\ -a_2 \end {bmatrix} $ and for $\vec{\sigma} \cdot \vec{b}$ a very similar eqtn by symmetry.

But again I won't be able to multiply out $ \left( \vec\sigma \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) $ because of different matrix ranks? Must be a better way to do this (one that also works :-))
To start with you need to figure out what [math]\vec{ \sigma } \cdot \vec{a}[/math] is. [math]\vec{\sigma} = \sigma _x ~ \hat{x} + \sigma _y ~ \hat{y} + \sigma _z ~ \hat{z}[/math]. This is a "vector" of matrices. You are "dotting" it with a 3-vector [math]< a_x,~a_y,~a_z >[/math]. So:
[math]\vec{ \sigma } \cdot \vec{a} = \sigma _x ~ a_x + \sigma _y ~ a_y + \sigma _z ~ a_z = \left ( \begin{matrix} a_z & a_x - i~a_y \\ a_x + i~a_y & -a_z \end{matrix} \right )[/math]

Can you take it from here? (I'd give you a really cool and elegant method but I don't have any tricks for this one.)

-Dan
 
Yup thanks, once you pointed out they were a vector. I really need to find a way to notice that sort of thing!

Got a sore hand now :-)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K