MHB Proving the Pauli Matrix Identity with Ordinary Vectors: A Simplified Approach

ognik
Messages
626
Reaction score
2
I'm not sure I have the right approach here:

Using the three 2 X 2 Pauli spin matrices, let $ \vec{\sigma} = \hat{x} \sigma_1 + \hat{y} \sigma_2 +\hat{z} \sigma_3 $ and $\vec{a}, \vec{b}$ are ordinary vectors,

Show that $ \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) = \vec{a} \cdot \vec{b} I_2 + i \sigma \cdot \left( \vec{a} \times \vec{b}\right)$

I'm not sure how to go about this - the $i$ in the last term suggests to me that I have to laboriously multiply both sides ...

But the Pauli matrices are 2 X 2 , ex. $ \sigma_1 = \begin{bmatrix}0&1\\ 1&0\end{bmatrix}$ and $\vec{\sigma}$ appears to be Cartesian 3-D.

So I tried $ \vec\sigma \cdot \vec{a} = \hat{x} \sigma_1 \cdot \vec{a} + ... = \begin{bmatrix}1\\ 0 \\ 0 \end {bmatrix} \left( \begin{bmatrix}0&1\\1&0\end{bmatrix} \cdot \begin{bmatrix}a_1\\ a_2 \end {bmatrix} \right) + ...$

Not possible to multiply out like this, so keep the unit vectors as $\hat{x}$ etc. ...

I then get $ \vec\sigma \cdot \vec{a} = \hat{x} \begin{bmatrix}a_2 \\ a_1 \end {bmatrix} +\hat{y} \begin{bmatrix} -a_2\\ a_1 \end {bmatrix} +\hat{z} \begin{bmatrix}a_1\\ -a_2 \end {bmatrix} $ and for $\vec{\sigma} \cdot \vec{b}$ a very similar eqtn by symmetry.

But again I won't be able to multiply out $ \left( \vec\sigma \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) $ because of different matrix ranks? Must be a better way to do this (one that also works :-))
 
Physics news on Phys.org
ognik said:
I'm not sure I have the right approach here:

Using the three 2 X 2 Pauli spin matrices, let $ \vec{\sigma} = \hat{x} \sigma_1 + \hat{y} \sigma_2 +\hat{z} \sigma_3 $ and $\vec{a}, \vec{b}$ are ordinary vectors,

Show that $ \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) = \vec{a} \cdot \vec{b} I_2 + i \sigma \cdot \left( \vec{a} \times \vec{b}\right)$

I'm not sure how to go about this - the $i$ in the last term suggests to me that I have to laboriously multiply both sides ...

But the Pauli matrices are 2 X 2 , ex. $ \sigma_1 = \begin{bmatrix}0&1\\ 1&0\end{bmatrix}$ and $\vec{\sigma}$ appears to be Cartesian 3-D.

So I tried $ \vec\sigma \cdot \vec{a} = \hat{x} \sigma_1 \cdot \vec{a} + ... = \begin{bmatrix}1\\ 0 \\ 0 \end {bmatrix} \left( \begin{bmatrix}0&1\\1&0\end{bmatrix} \cdot \begin{bmatrix}a_1\\ a_2 \end {bmatrix} \right) + ...$

Not possible to multiply out like this, so keep the unit vectors as $\hat{x}$ etc. ...

I then get $ \vec\sigma \cdot \vec{a} = \hat{x} \begin{bmatrix}a_2 \\ a_1 \end {bmatrix} +\hat{y} \begin{bmatrix} -a_2\\ a_1 \end {bmatrix} +\hat{z} \begin{bmatrix}a_1\\ -a_2 \end {bmatrix} $ and for $\vec{\sigma} \cdot \vec{b}$ a very similar eqtn by symmetry.

But again I won't be able to multiply out $ \left( \vec\sigma \cdot \vec{a} \right) \left( \vec{\sigma} \cdot \vec{b} \right) $ because of different matrix ranks? Must be a better way to do this (one that also works :-))
To start with you need to figure out what [math]\vec{ \sigma } \cdot \vec{a}[/math] is. [math]\vec{\sigma} = \sigma _x ~ \hat{x} + \sigma _y ~ \hat{y} + \sigma _z ~ \hat{z}[/math]. This is a "vector" of matrices. You are "dotting" it with a 3-vector [math]< a_x,~a_y,~a_z >[/math]. So:
[math]\vec{ \sigma } \cdot \vec{a} = \sigma _x ~ a_x + \sigma _y ~ a_y + \sigma _z ~ a_z = \left ( \begin{matrix} a_z & a_x - i~a_y \\ a_x + i~a_y & -a_z \end{matrix} \right )[/math]

Can you take it from here? (I'd give you a really cool and elegant method but I don't have any tricks for this one.)

-Dan
 
Yup thanks, once you pointed out they were a vector. I really need to find a way to notice that sort of thing!

Got a sore hand now :-)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top