- #1
LagrangeEuler
- 717
- 22
Relations between vectors in cylindrical and
Cartesian
coordinate systems are given by
[tex]\vec{e}_{\rho}=\cos \varphi \vec{e}_x+\sin \varphi \vec{e}_y[/tex]
[tex]\vec{e}_{\varphi}=-\sin \varphi \vec{e}_x+\cos \varphi \vec{e}_y [/tex]
[tex] \vec{e}_z=\vec{e}_z [/tex]
We can write this in form
[tex]
\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}
=\begin{bmatrix}
\cos \varphi & \sin \varphi & 0 \\[0.3em]
-\sin \varphi & \cos \varphi & 0 \\[0.3em]
0 & 0 & 1 \\[0.3em]
\end{bmatrix}
\begin{bmatrix}
\vec{e}_x \\[0.3em]
\vec{e}_y \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}
[/tex]
where matrix ##
\begin{bmatrix}
\cos \varphi & \sin \varphi & 0 \\[0.3em]
-\sin \varphi & \cos \varphi & 0 \\[0.3em]
0 & 0 & 1 \\[0.3em]
\end{bmatrix}## is orthogonal. Then means that norms of the vectors ##
\begin{bmatrix}
\vec{e}_x \\[0.3em]
\vec{e}_y \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## and
##
\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## are the same. But how to define norm of vector
##\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}##?
Cartesian
coordinate systems are given by
[tex]\vec{e}_{\rho}=\cos \varphi \vec{e}_x+\sin \varphi \vec{e}_y[/tex]
[tex]\vec{e}_{\varphi}=-\sin \varphi \vec{e}_x+\cos \varphi \vec{e}_y [/tex]
[tex] \vec{e}_z=\vec{e}_z [/tex]
We can write this in form
[tex]
\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}
=\begin{bmatrix}
\cos \varphi & \sin \varphi & 0 \\[0.3em]
-\sin \varphi & \cos \varphi & 0 \\[0.3em]
0 & 0 & 1 \\[0.3em]
\end{bmatrix}
\begin{bmatrix}
\vec{e}_x \\[0.3em]
\vec{e}_y \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}
[/tex]
where matrix ##
\begin{bmatrix}
\cos \varphi & \sin \varphi & 0 \\[0.3em]
-\sin \varphi & \cos \varphi & 0 \\[0.3em]
0 & 0 & 1 \\[0.3em]
\end{bmatrix}## is orthogonal. Then means that norms of the vectors ##
\begin{bmatrix}
\vec{e}_x \\[0.3em]
\vec{e}_y \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## and
##
\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## are the same. But how to define norm of vector
##\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}##?